The training of academic radiation oncologists and biologists has suffered nationwide from the paucity of formalized training programs. In this application we propose to bring together faculty associated with all three radiation oncology subspecialties (medicine, biology and physics) to establish an interdisciplinary postgraduate training program in radiation sciences. This two year program will accept two exceptional postdoctoral fellows and/or medical residents per year who are interested in an intensive research-based program. The goals of the training program are 1) To teach the trainees the theory concerning the physics governing the delivery of radiation, and the cellular biology governing its biologic effect. 2) To educate participants in the design and execution of cutting edge research in the radiation sciences. And 3) To gather together trainees from the fields of medicine, biology and physics so that they may develop a mutual appreciation for the many aspects of the study and treatment of patients with cancer. This is a particularly timely and relevant application because therapeutic radiation has become a mainstay in the treatment of many forms cancer. It is therefore imperative to develop a well trained cohort of professionals who will be responsible for the next generation of therapeutic advancements.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Institutional National Research Service Award (T32)
Project #
5T32CA121940-04
Application #
7922115
Study Section
Subcommittee G - Education (NCI)
Program Officer
Lim, Susan E
Project Start
2007-09-01
Project End
2012-08-31
Budget Start
2010-09-01
Budget End
2011-08-31
Support Year
4
Fiscal Year
2010
Total Cost
$225,996
Indirect Cost
Name
Stanford University
Department
Radiation-Diagnostic/Oncology
Type
Schools of Medicine
DUNS #
009214214
City
Stanford
State
CA
Country
United States
Zip Code
94305
Castellini, Laura; Moon, Eui Jung; Razorenova, Olga V et al. (2017) KDM4B/JMJD2B is a p53 target gene that modulates the amplitude of p53 response after DNA damage. Nucleic Acids Res 45:3674-3692
Aguilera, Todd A; Giaccia, Amato J (2017) Molecular Pathways: Oncologic Pathways and Their Role in T-cell Exclusion and Immune Evasion-A New Role for the AXL Receptor Tyrosine Kinase. Clin Cancer Res 23:2928-2933
Lartey, Frederick M; Rafat, Marjan; Negahdar, Mohammadreza et al. (2017) Dynamic CT imaging of volumetric changes in pulmonary nodules correlates with physical measurements of stiffness. Radiother Oncol 122:313-318
Vilalta, Marta; Rafat, Marjan; Graves, Edward E (2016) Effects of radiation on metastasis and tumor cell migration. Cell Mol Life Sci 73:2999-3007
Wright, H J; Arulmoli, J; Motazedi, M et al. (2016) CDCP1 cleavage is necessary for homodimerization-induced migration of triple-negative breast cancer. Oncogene 35:4762-72
DeFreitas, Timothy; Saddiki, Hachem; Flaherty, Patrick (2016) GEMINI: a computationally-efficient search engine for large gene expression datasets. BMC Bioinformatics 17:102
Ouyang, Yu; Kim, Tae Jin; Pratx, Guillem (2016) Evaluation of a BGO-Based PET System for Single-Cell Tracking Performance by Simulation and Phantom Studies. Mol Imaging 15:
Aguilera, Todd A; Rafat, Marjan; Castellini, Laura et al. (2016) Reprogramming the immunological microenvironment through radiation and targeting Axl. Nat Commun 7:13898
LaGory, Edward L; Giaccia, Amato J (2016) The ever-expanding role of HIF in tumour and stromal biology. Nat Cell Biol 18:356-65
LaGory, Edward L; Wu, Colleen; Taniguchi, Cullen M et al. (2015) Suppression of PGC-1? Is Critical for Reprogramming Oxidative Metabolism in Renal Cell Carcinoma. Cell Rep 12:116-127

Showing the most recent 10 out of 42 publications