Dramatic expansion of biomedical data in the post-genomic era on various organisms, including humans, has disclosed the enormous complexity of biological systems and increased our knowledge of many disease processes. This is particularly evident in reference to neoplastic disorders where molecular technologies on a genome, epigenome, transcriptome and proteomic scale have disclosed unique molecular pathways and their networks that provide significant information concerning therapeutic strategies and clinical outcomes. This in turn has affected the standard of practice of many medical disciplines including pathology. The newly developed concept of personalized and targeted therapies in cancer medicine increased and changed the traditional roles of pathology as a clinical discipline. The expanding molecular testing of tumors, with complex technologic approaches, requires a redesign of the conventional microscopic pathology services. This T32 proposal is intended to provide resources to train a new generation of pathologists via laboratory-based research training that will complement the current Accreditation Council for Graduate Medical Education-accredited clinical fellowship programs of the Department of Pathology at The University of Texas MD Anderson Cancer Center. The goal of this program is to train the next generation of physician/scientist pathologists capable of combining the conventional role of diagnostic pathology with investigative molecular approaches. To accomplish this goal, a focused 2-year research program will pair trainees with experienced educators who are also accomplished translational researchers. The trainees will work in their mentors'laboratories training in laboratory methods, processes, and team orientation needed in today's translational research. The graduates of this program will complete research projects aimed at improving patient care with patient-directed personalized treatment, concluding with the submission of a manuscript to a peer-reviewed journal. Coursework and a wide range of educational opportunities at The University of Texas MD Anderson Cancer Center will complement the laboratory research training. Combined with subspecialty clinical training, this program will produce extremely well-qualified academic, research-oriented pathologists who can, by themselves, be independent researchers and future academic mentors.

Public Health Relevance

This research training program is especially relevant to Public Health as evolving cancer treatment modalities moves into molecularly targeted and individualized therapies. Therefore, well-trained molecular pathologists who have proven diagnostic skills coupled with laboratory- based research training will be critical in delivering te contemporary cancer care.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Institutional National Research Service Award (T32)
Project #
5T32CA163185-04
Application #
8721730
Study Section
Subcommittee B - Comprehensiveness (NCI)
Program Officer
Lim, Susan E
Project Start
2011-09-23
Project End
2016-08-31
Budget Start
2014-09-01
Budget End
2015-08-31
Support Year
4
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of Texas MD Anderson Cancer Center
Department
Pathology
Type
Hospitals
DUNS #
City
Houston
State
TX
Country
United States
Zip Code
77030
Sahm, Felix; Schrimpf, Daniel; Olar, Adriana et al. (2016) TERT Promoter Mutations and Risk of Recurrence in Meningioma. J Natl Cancer Inst 108:
Peng, Weiyi; Chen, Jie Qing; Liu, Chengwen et al. (2016) Loss of PTEN Promotes Resistance to T Cell-Mediated Immunotherapy. Cancer Discov 6:202-16
Chen, Pei-Ling; Roh, Whijae; Reuben, Alexandre et al. (2016) Analysis of Immune Signatures in Longitudinal Tumor Samples Yields Insight into Biomarkers of Response and Mechanisms of Resistance to Immune Checkpoint Blockade. Cancer Discov 6:827-37
Gao, Jianjun; Shi, Lewis Zhichang; Zhao, Hao et al. (2016) Loss of IFN-γ Pathway Genes in Tumor Cells as a Mechanism of Resistance to Anti-CTLA-4 Therapy. Cell 167:397-404.e9
Roszik, Jason; Haydu, Lauren E; Hess, Kenneth R et al. (2016) Novel algorithmic approach predicts tumor mutation load and correlates with immunotherapy clinical outcomes using a defined gene mutation set. BMC Med 14:168
Thomas, Christian; Sill, Martin; Ruland, Vincent et al. (2016) Methylation profiling of choroid plexus tumors reveals 3 clinically distinct subgroups. Neuro Oncol 18:790-6
Roszik, Jason; Wu, Chang-Jiun; Siroy, Alan E et al. (2016) Somatic Copy Number Alterations at Oncogenic Loci Show Diverse Correlations with Gene Expression. Sci Rep 6:19649
Guo, Charles Chuanhai; Dadhania, Vipulkumar; Zhang, Li et al. (2016) Gene Expression Profile of the Clinically Aggressive Micropapillary Variant of Bladder Cancer. Eur Urol :
Dadhania, Vipulkumar; Zhang, Miao; Zhang, Li et al. (2016) Meta-Analysis of the Luminal and Basal Subtypes of Bladder Cancer and the Identification of Signature Immunohistochemical Markers for Clinical Use. EBioMedicine 12:105-117
Liang, Li; Jiang, Yi; Chen, Jun-Song et al. (2016) B7-H4 expression in ovarian serous carcinoma: a study of 306 cases. Hum Pathol 57:1-6

Showing the most recent 10 out of 40 publications