This application is a request for funds to support a program in Cell and Developmental Biology (CDB) at Harvard Medical School, which has offered graduate training in this discipline continuously since 1969. We request funds to support second-year students with interests in these tightly intertwined disciplines, reflecting both the interests of the incoming students and the number and diversity of the faculty. The CDB training program has 75 participating faculty and accepts students with a specific focus in Cell and Developmental Biology who have matriculated into the interdepartmental Biological and Biomedical Sciences (BBS) admissions portal. 40-50% of the incoming BBS students (22 in 2010) declare an interest in this discipline, making CDB a high priority within our educational mission. The CDB program plays the leading role in organizing the educational activities of these students and brings together faculty and students working in the areas of cell and developmental biology for teaching, intellectual exchange, mentoring and ultimately career building. Moreover, we provide students with a strong foundation in cell and developmental biology that will allow them to develop sound scientific hypotheses, to think broadly and criticall about their research and that of others, and to have an extensive understanding of relevant experimental methodologies. We recognize and address the challenges associated with training students in disciplines that are rapidly evolving, breaking traditional field barriers and incorporating new approaches and methodologies from fields as far apart as physics, engineering and mathematics. CDB is an interdepartmental program that draws faculty mainly from the departments of Cell Biology and Stem Cell and Regenerative Biology as well as from the other basic science departments at the Harvard Medical School. The research activities of our faculty are diverse representing major strengths in both classical areas in the field as well a emerging themes including stem cell biology, live imaging and quantitative biology. In addition to "traditional" teaching approaches that cover broader topics in the form of courses, seminars, and discussions, we have developed novel teaching tools to ensure a dynamic and integrative educational experience for our students and increase their quantitative and computational skills and offer students many opportunities for interacting with the faculty. The development and coordination of these innovative teaching platforms and mentoring initiatives have been spearheaded by Ph.D.-level Curriculum Fellows who are supported by the Medical School and are dedicated to the graduate educational activities of the program. We view Cell and Developmental Biology for their intrinsic value to address fundamental biological problems but also as a conduit to understanding the molecular underpinnings of human biology and pathology. Given conservation of function, studies of model systems, such as yeast, worms, frogs, flies and mice, as well as in vitro models of human cells, have become significant tools for medicine.

Public Health Relevance

Cell and Developmental Biology defines an educational cornerstone of modern biology and medicine. Breakthrough discoveries in this area require scientists who are not only well trained in the fundamentals of these disciplines but also capable of adapting to a rapidly advancing field, which constantly breaks traditional field barriers. This training grant seeks to train students seeking the PhD degree in these disciplines giving them the research and educational armamentarium that will allow them to thrive as researchers and scholars.

National Institute of Health (NIH)
Institutional National Research Service Award (T32)
Project #
Application #
Study Section
National Institute of General Medical Sciences Initial Review Group (BRT)
Program Officer
Gindhart, Joseph G
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Harvard Medical School
Anatomy/Cell Biology
Schools of Medicine
United States
Zip Code
Kim, Leo A; Amarnani, Dhanesh; Gnanaguru, Gopalan et al. (2014) Tamoxifen toxicity in cultured retinal pigment epithelial cells is mediated by concurrent regulated cell death mechanisms. Invest Ophthalmol Vis Sci 55:4747-58
Kumar, Vipul; Alt, Frederick W; Oksenych, Valentyn (2014) Functional overlaps between XLF and the ATM-dependent DNA double strand break response. DNA Repair (Amst) 16:11-22
Dickins, Benjamin; Rebolledo-Jaramillo, Boris; Su, Marcia Shu-Wei et al. (2014) Controlling for contamination in re-sequencing studies with a reproducible web-based phylogenetic approach. Biotechniques 56:134-6, 138-41
Stanley, Illana A; Ribeiro, Sofia M; Gimenez-Cassina, Alfredo et al. (2014) Changing appetites: the adaptive advantages of fuel choice. Trends Cell Biol 24:118-27
Tepsuporn, Suprawee; Hu, Jiazhi; Gostissa, Monica et al. (2014) Mechanisms that can promote peripheral B-cell lymphoma in ATM-deficient mice. Cancer Immunol Res 2:857-66
Flusberg, Deborah A; Roux, Jeremie; Spencer, Sabrina L et al. (2013) Cells surviving fractional killing by TRAIL exhibit transient but sustainable resistance and inflammatory phenotypes. Mol Biol Cell 24:2186-200
Liu, Leah Y; Fox, Caroline S; North, Trista E et al. (2013) Functional validation of GWAS gene candidates for abnormal liver function during zebrafish liver development. Dis Model Mech 6:1271-8
Walsh, Ryan M; Hochedlinger, Konrad (2013) A variant CRISPR-Cas9 system adds versatility to genome engineering. Proc Natl Acad Sci U S A 110:15514-5
Sung, Yongjin; Tzur, Amit; Oh, Seungeun et al. (2013) Size homeostasis in adherent cells studied by synthetic phase microscopy. Proc Natl Acad Sci U S A 110:16687-92
Wu, Melissa P; Doyle, Jamie R; Barry, Brenda et al. (2013) G-protein coupled receptor 56 promotes myoblast fusion through serum response factor- and nuclear factor of activated T-cell-mediated signalling but is not essential for muscle development in vivo. FEBS J 280:6097-113

Showing the most recent 10 out of 68 publications