Continued support is requested for an ongoing program of graduate research training in molecular biology and biophysics at the University of Oregon. This training activity is centered in the Institute of Molecular Biology, and also involves additional groups with related scientific interests. Funds are requested for 12 predoctoral positions, within a program that includes approximately 59 graduate students, 47 postdoctoral trainees, and 22 training faculty. The program places special emphasis on the control of gene expression and nucleic acid structure/function, molecular basis of signaling and cell function, protein structure and dynamics, and molecular approaches to development and differentiation. The basic aspect of the training is laboratory research carried out under the direction of a facult member in the molecular biology and biophysics training program. Through this experience, the trainee becomes skilled at posing questions about fundamental biological processes and designing experiments to answer those questions. The training is augmented by formal courses offered by the Biology, Chemistry, and Physics Departments, by seminar programs that highlight current research in molecular biology, biophysics, and related disciplines, by the close involvement of a Thesis Advisory Committee, and by research seminar and journal club presentations by trainees. The training facilities include the laboratories of the faculty and support services such as the structural biology biophysical facility, the state-of-the-art genomics and imaging facilities, and a large number of other modern facilities. Major equipment is shared and housed in common space. The laboratories of most of the faculty are contiguous and in interconnected buildings. This arrangement fosters strong interdisciplinary interactions and collaborations among faculty and students.

Public Health Relevance

This proposal is to provide support for graduate training leading to the Ph.D. degree in molecular biology and biophysics. Our goal is to produce creative, intellectually critical, and experimentally skilled bioscientists. We believe that trainig towards this end is first and foremost accomplished at the laboratory bench, and training is focused on learning to find a rigorous experimental answer to a significant scientific question. The training program actively promotes strongly interdisciplinary and collaborative science. We want our students to develop into imaginative and capable research scientists, equipped with the knowledge to lead research programs of their own, thereby strengthening the national resource in this area.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Institutional National Research Service Award (T32)
Project #
2T32GM007759-34
Application #
8267932
Study Section
Special Emphasis Panel (ZGM1-BRT-X (TR))
Program Officer
Flicker, Paula F
Project Start
1979-07-01
Project End
2017-06-30
Budget Start
2012-07-01
Budget End
2013-06-30
Support Year
34
Fiscal Year
2012
Total Cost
$348,823
Indirect Cost
$16,980
Name
University of Oregon
Department
Biochemistry
Type
Organized Research Units
DUNS #
948117312
City
Eugene
State
OR
Country
United States
Zip Code
97403
McKeown, Alesia N; Bridgham, Jamie T; Anderson, Dave W et al. (2014) Evolution of DNA specificity in a transcription factor family produced a new gene regulatory module. Cell 159:58-68
Ward, W Luke; Plakos, Kory; DeRose, Victoria J (2014) Nucleic acid catalysis: metals, nucleobases, and other cofactors. Chem Rev 114:4318-42
Osborn, Maire F; White, Jonathan D; Haley, Michael M et al. (2014) Platinum-RNA modifications following drug treatment in S. cerevisiae identified by click chemistry and enzymatic mapping. ACS Chem Biol 9:2404-11
Helgeson, Luke A; Prendergast, Julianna G; Wagner, Andrew R et al. (2014) Interactions with actin monomers, actin filaments, and Arp2/3 complex define the roles of WASP family proteins and cortactin in coordinately regulating branched actin networks. J Biol Chem 289:28856-69
Wagner, Andrew R; Luan, Qing; Liu, Su-Ling et al. (2013) Dip1 defines a class of Arp2/3 complex activators that function without preformed actin filaments. Curr Biol 23:1990-8
Hostetter, Alethia A; Osborn, Maire F; DeRose, Victoria J (2012) RNA-Pt adducts following cisplatin treatment of Saccharomyces cerevisiae. ACS Chem Biol 7:218-25
Ward, W Luke; Derose, Victoria J (2012) Ground-state coordination of a catalytic metal to the scissile phosphate of a tertiary-stabilized Hammerhead ribozyme. RNA 18:16-23
Tan, Ek Han; Blevins, Todd; Ream, Thomas S et al. (2012) Functional consequences of subunit diversity in RNA polymerases II and V. Cell Rep 1:208-14
Chapman, Erich G; Hostetter, Alethia A; Osborn, Maire F et al. (2011) Binding of kinetically inert metal ions to RNA: the case of platinum(II). Met Ions Life Sci 9:347-77
Gates, Devika P; Coonrod, Leslie A; Berglund, J Andrew (2011) Autoregulated splicing of muscleblind-like 1 (MBNL1) Pre-mRNA. J Biol Chem 286:34224-33

Showing the most recent 10 out of 65 publications