This proposal seeks support for a training program at the Chemistry-Biology Interface (CBI) at Johns Hopkins University. The goal is to train predoctoral students to carry out biomedical research using the tools of Chemistry and Biology. The Program is a collaborative effort between faculty in the Departments of Biochemistry and Molecular Biology (Bloomberg School of Public Health) and Pharmacology and Molecular Sciences (School of Medicine), with their colleagues in the Biology and Chemistry Departments (Zanvyl Krieger School of Arts &Sciences). Student participants will have a diverse array of research projects including synthesis, mechanism, enzymology, molecular imaging, and biomacromolecular structure to choose from in 26 research groups. The students will receive coursework training in the biological and chemical sciences, including a two-semester course in Chemical Biology designed especially for the Program, but open to all Johns Hopkins University students. Other aspects of the CBI Program include CBI Forum where students will present literature seminars, defend original research proposals, and defend their theses, as well as an Annual Retreat. The CBI Program was initiated in fall 2005 using funding from the University and will consist of 6 students in fall 2006. Support is requested to support 4 graduate students, increasing to 6 students in year 3, as the momentum of the Program increases. An extensive network of support in the form of advising and mentoring is in place to maximize the students'success. Relevance: The roles of chemistry and biology in basic and applied biomedical research are of paramount importance. There is a rapidly increasing need for scientists who can traverse both fields of science. The CBI Program at Johns Hopkins University will train scientists with this ability.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Institutional National Research Service Award (T32)
Project #
5T32GM080189-05
Application #
8316417
Study Section
National Institute of General Medical Sciences Initial Review Group (BRT)
Program Officer
Fabian, Miles
Project Start
2008-07-01
Project End
2013-06-30
Budget Start
2012-07-01
Budget End
2013-06-30
Support Year
5
Fiscal Year
2012
Total Cost
$220,214
Indirect Cost
$10,613
Name
Johns Hopkins University
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
001910777
City
Baltimore
State
MD
Country
United States
Zip Code
21218
Barajas, Jesus F; Finzel, Kara; Valentic, Timothy R et al. (2016) Structural and Biochemical Analysis of Protein-Protein Interactions Between the Acyl-Carrier Protein and Product Template Domain. Angew Chem Int Ed Engl 55:13005-13009
Saha, Shalini; Rokita, Steven E (2016) An Activator of an Adenylation Domain Revealed by Activity but Not Sequence Homology. Chembiochem 17:1818-1823
Hansen, Erik C; Ransom, Monica; Hesselberth, Jay R et al. (2016) Diverse fates of uracilated HIV-1 DNA during infection of myeloid lineage cells. Elife 5:
Reiter, Katherine H; Ramachandran, Anita; Xia, Xue et al. (2016) Characterization and Structural Insights into Selective E1-E2 Interactions in the Human and Plasmodium falciparum SUMO Conjugation Systems. J Biol Chem 291:3860-70
Nemeria, Natalia S; Shome, Brateen; DeColli, Alicia A et al. (2016) Competence of Thiamin Diphosphate-Dependent Enzymes with 2'-Methoxythiamin Diphosphate Derived from Bacimethrin, a Naturally Occurring Thiamin Anti-vitamin. Biochemistry 55:1135-48
Steinberg, Barrett; Ostermeier, Marc (2016) Shifting Fitness and Epistatic Landscapes Reflect Trade-offs along an Evolutionary Pathway. J Mol Biol 428:2730-43
Choi, Jay H; Xiong, Tina; Ostermeier, Marc (2016) The interplay between effector binding and allostery in an engineered protein switch. Protein Sci 25:1605-16
Steinberg, Barrett; Ostermeier, Marc (2016) Environmental changes bridge evolutionary valleys. Sci Adv 2:e1500921
Phatarphekar, Abhishek; Rokita, Steven E (2016) Functional analysis of iodotyrosine deiodinase from drosophila melanogaster. Protein Sci 25:2187-2195
Newman, Adam G; Townsend, Craig A (2016) Molecular Characterization of the Cercosporin Biosynthetic Pathway in the Fungal Plant Pathogen Cercospora nicotianae. J Am Chem Soc 138:4219-28

Showing the most recent 10 out of 47 publications