This proposal seeks support for a training program at the Chemistry-Biology Interface (CBI) at Johns Hopkins University. The goal is to train predoctoral students to carry out biomedical research using the tools of Chemistry and Biology. The Program is a collaborative effort between faculty in the Departments of Biochemistry and Molecular Biology (Bloomberg School of Public Health) and Pharmacology and Molecular Sciences (School of Medicine), with their colleagues in the Biology and Chemistry Departments (Zanvyl Krieger School of Arts &Sciences). Student participants will have a diverse array of research projects including synthesis, mechanism, enzymology, molecular imaging, and biomacromolecular structure to choose from in 26 research groups. The students will receive coursework training in the biological and chemical sciences, including a two-semester course in Chemical Biology designed especially for the Program, but open to all Johns Hopkins University students. Other aspects of the CBI Program include CBI Forum where students will present literature seminars, defend original research proposals, and defend their theses, as well as an Annual Retreat. The CBI Program was initiated in fall 2005 using funding from the University and will consist of 6 students in fall 2006. Support is requested to support 4 graduate students, increasing to 6 students in year 3, as the momentum of the Program increases. An extensive network of support in the form of advising and mentoring is in place to maximize the students'success. Relevance: The roles of chemistry and biology in basic and applied biomedical research are of paramount importance. There is a rapidly increasing need for scientists who can traverse both fields of science. The CBI Program at Johns Hopkins University will train scientists with this ability.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Institutional National Research Service Award (T32)
Project #
Application #
Study Section
National Institute of General Medical Sciences Initial Review Group (BRT)
Program Officer
Fabian, Miles
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Johns Hopkins University
Schools of Arts and Sciences
United States
Zip Code
Newman, Adam G; Vagstad, Anna L; Storm, Philip A et al. (2014) Systematic domain swaps of iterative, nonreducing polyketide synthases provide a mechanistic understanding and rationale for catalytic reprogramming. J Am Chem Soc 136:7348-62
Anderson, Breeana G; Stivers, James T (2014) Variola type IB DNA topoisomerase: DNA binding and supercoil unwinding using engineered DNA minicircles. Biochemistry 53:4302-15
Johnson, Eric A; Rice, Selena L; Preimesberger, Matthew R et al. (2014) Characterization of THB1, a Chlamydomonas reinhardtii truncated hemoglobin: linkage to nitrogen metabolism and identification of lysine as the distal heme ligand. Biochemistry 53:4573-89
Smith, Jessica M; Warrington, Nicole V; Vierling, Ryan J et al. (2014) Targeting DXP synthase in human pathogens: enzyme inhibition and antimicrobial activity of butylacetylphosphonate. J Antibiot (Tokyo) 67:77-83
Hansen, Erik C; Seamon, Kyle J; Cravens, Shannen L et al. (2014) GTP activator and dNTP substrates of HIV-1 restriction factor SAMHD1 generate a long-lived activated state. Proc Natl Acad Sci U S A 111:E1843-51
Boucher, Lauren E; Bosch, J├╝rgen (2014) Structure of Toxoplasma gondii fructose-1,6-bisphosphate aldolase. Acta Crystallogr F Struct Biol Commun 70:1186-92
Seamon, Kyle J; Hansen, Erik C; Kadina, Anastasia P et al. (2014) Small molecule inhibition of SAMHD1 dNTPase by tetramer destabilization. J Am Chem Soc 136:9822-5
Hain, Adelaide U P; Bartee, David; Sanders, Natalie G et al. (2014) Identification of an Atg8-Atg3 protein-protein interaction inhibitor from the medicines for Malaria Venture Malaria Box active in blood and liver stage Plasmodium falciparum parasites. J Med Chem 57:4521-31
Chaikind, Brian; Ostermeier, Marc (2014) Directed evolution of improved zinc finger methyltransferases. PLoS One 9:e96931
Afanador, Gustavo A; Matthews, Krista A; Bartee, David et al. (2014) Redox-dependent lipoylation of mitochondrial proteins in Plasmodium falciparum. Mol Microbiol 94:156-71

Showing the most recent 10 out of 16 publications