We request funds to continue the interdisciplinary training program in genomics at the University of Washington and affiliated institutions. The program focuses on preparing pre-and postgraduates for a research career in genomics, proteomics and computational biology. Trainees will be engaged in projects that include discovering how a genome encodes the information for gene products to perform complex biological tasks;measuring and analyzing sequence variation;developing technologies to accommodate high throughput experimental assays including next generation sequencing;and generating new computational tools to analyze genomic and proteomic data. As these research challenges demand interdisciplinary approaches and multidisciplinary collaborations, a goal of this program is to attract individuals trained in computer science, statistics, physics, and engineering to biological research. The program also trains cellular and molecular biologists in other disciplines so that they can effectively collaborate at this interdisciplinary interface. Given the wide diversity in educational backgrounds and career goals among our trainees, the program emphasizes highly individualized training programs and interdisciplinary research. A multidisciplinary group of 45 faculty, selected for their involvement in genome and proteome analysis and their strong record of productive collaborative interactions, comprises the training team. Research experience is complemented with a variety of didactic courses and electives. The trainees are also exposed to discussions on ethical research conduct and the ethical, legal, and social implications of genomic research. Breadth of knowledge and program cohesion are achieved through trainee participation in two seminar series that feature genomic research and computational biology, journal clubs, and research reports. In the coming five years, we will continue to expand our program in genomics, proteomics, instrumentation development, computational biology, and statistical genomics. We request funds to train 14 predoctoral and 7 postdoctoral fellows each year so that they emerge with the skills necessary for success in academic and biomedical research of the 21st century made possible by advances in genomics.

Public Health Relevance

Genomics is integral to modern biomedical research and diagnosis. Genome wide studies are used to identify potential genetic causes of disease, and proteomics is often used to identify biomarkers. Our program will train pre and postdoctoral trainees for future biomedical and interdisciplinary research in genomics, proteomics and computational biology.

Agency
National Institute of Health (NIH)
Institute
National Human Genome Research Institute (NHGRI)
Type
Institutional National Research Service Award (T32)
Project #
2T32HG000035-16
Application #
7850051
Study Section
Ethical, Legal, Social Implications Review Committee (GNOM)
Program Officer
Graham, Bettie
Project Start
1995-08-01
Project End
2015-08-31
Budget Start
2010-09-01
Budget End
2011-08-31
Support Year
16
Fiscal Year
2010
Total Cost
$954,899
Indirect Cost
Name
University of Washington
Department
Genetics
Type
Schools of Medicine
DUNS #
605799469
City
Seattle
State
WA
Country
United States
Zip Code
98195
Hendrickson, Peter G; DorĂ¡is, Jessie A; Grow, Edward J et al. (2017) Conserved roles of mouse DUX and human DUX4 in activating cleavage-stage genes and MERVL/HERVL retrotransposons. Nat Genet 49:925-934
Campbell, Amy E; Oliva, Jonathan; Yates, Matthew P et al. (2017) BET bromodomain inhibitors and agonists of the beta-2 adrenergic receptor identified in screens for compounds that inhibit DUX4 expression in FSHD muscle cells. Skelet Muscle 7:16
Whiddon, Jennifer L; Langford, Ashlee T; Wong, Chao-Jen et al. (2017) Conservation and innovation in the DUX4-family gene network. Nat Genet 49:935-940
Hope, Elyse A; Amorosi, Clara J; Miller, Aaron W et al. (2017) Experimental Evolution Reveals Favored Adaptive Routes to Cell Aggregation in Yeast. Genetics 206:1153-1167
Turner, Tychele N; Yi, Qian; Krumm, Niklas et al. (2017) denovo-db: a compendium of human de novo variants. Nucleic Acids Res 45:D804-D811
McCreight, Jennifer C; Schneider, Sean E; Wilburn, Damien B et al. (2017) Evolution of microRNA in primates. PLoS One 12:e0176596
Stessman, Holly A F; Xiong, Bo; Coe, Bradley P et al. (2017) Targeted sequencing identifies 91 neurodevelopmental-disorder risk genes with autism and developmental-disability biases. Nat Genet 49:515-526
Zimmerman, Sandra G; Merrihew, Gennifer E; MacCoss, Michael J et al. (2017) Proteomics Analysis Identifies Orthologs of Human Chitinase-Like Proteins as Inducers of Tube Morphogenesis Defects in Drosophila melanogaster. Genetics 206:973-984
Geisheker, Madeleine R; Heymann, Gabriel; Wang, Tianyun et al. (2017) Hotspots of missense mutation identify neurodevelopmental disorder genes and functional domains. Nat Neurosci 20:1043-1051
Smukowski Heil, Caiti S; DeSevo, Christopher G; Pai, Dave A et al. (2017) Loss of Heterozygosity Drives Adaptation in Hybrid Yeast. Mol Biol Evol 34:1596-1612

Showing the most recent 10 out of 183 publications