This is a new T32 application requesting funding for a Neurobiology of CNS Injury and Repair Training Program for 4 predoctoral fellows/year. The training of the predoctoral fellows will be carried out by training faculty in the University of Kentucky Spinal Cord &Brain Injury Research Center (SCoBIRC). The overall goal of the proposed program is to provide broad-based training in modern research concepts regarding the acute, subacute and chronic pathophysiology of SCI and TBI and the identification of potential disease-modifying molecular targets that can drive the discovery of pharmacological and gene therapeutic strategies by which the devastating effects of these injuries can be ameliorated. These strategies will include both """"""""neuroprotective"""""""" and """"""""neurorestorative"""""""" approaches. Although it is anticipated that most of the trainees will pursue careers in laboratory-based therapeutic discovery research, they will also receive training in clinical aspects of the targeted neurological disorders and the practical issues involved in the design and conduct of neurological clinical trials. To accomplish this, the predoctoral fellows wil also spend one day/week for a semester shadowing neurological, neurosurgical and/or neurorehabilitation clinical faculty, and attending weekly grand rounds to gain an understanding of the clinical nature of TBI and SCI that their research is focused upon. This will enhance their future ability as independent investigators to not only make therapeutic discoveries in experimental injury models, but also provide them with knowledge concerning how to design their basic research in a manner that will more readily enable the translation of promising therapeutic approaches into clinical studies and therapeutic trials.

Public Health Relevance

PROJECT NARRATIVE This project will involve the development of a new training program to prepare 4 predoctoral fellows/year for neurological research careers directed at the discovery and translation of novel neuroprotective and neurorestorative therapies for the treatment of traumatic spinal cord and brain injuries. The training will be directed by basic science and clinical faculty of the University of Kentucky Spina Cord &Brain Injury Research Center.

National Institute of Health (NIH)
National Institute of Neurological Disorders and Stroke (NINDS)
Institutional National Research Service Award (T32)
Project #
Application #
Study Section
Special Emphasis Panel (ZNS1-SRB-P (63))
Program Officer
Korn, Stephen J
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Kentucky
Schools of Medicine
United States
Zip Code
Eldahan, Khalid C; Rabchevsky, Alexander G (2018) Autonomic dysreflexia after spinal cord injury: Systemic pathophysiology and methods of management. Auton Neurosci 209:59-70
Griggs, Ryan B; Laird, Don E; Donahue, Renee R et al. (2017) Methylglyoxal Requires AC1 and TRPA1 to Produce Pain and Spinal Neuron Activation. Front Neurosci 11:679
Gollihue, Jenna L; Patel, Samir P; Mashburn, Charlie et al. (2017) Optimization of mitochondrial isolation techniques for intraspinal transplantation procedures. J Neurosci Methods 287:1-12
Maniskas, Michael E; Roberts, Jill M; Aron, Ishi et al. (2016) Stroke neuroprotection revisited: Intra-arterial verapamil is profoundly neuroprotective in experimental acute ischemic stroke. J Cereb Blood Flow Metab 36:721-30
Griggs, Ryan B; Donahue, Renee R; Adkins, Braxton G et al. (2016) Pioglitazone Inhibits the Development of Hyperalgesia and Sensitization of Spinal Nociresponsive Neurons in Type 2 Diabetes. J Pain 17:359-73
Griggs, Ryan B; Donahue, Renee R; Morgenweck, Jenny et al. (2015) Pioglitazone rapidly reduces neuropathic pain through astrocyte and nongenomic PPAR? mechanisms. Pain 156:469-82
Griggs, Ryan B; Bardo, Michael T; Taylor, Bradley K (2015) Gabapentin alleviates affective pain after traumatic nerve injury. Neuroreport 26:522-7
Miller, Darren M; Singh, Indrapal N; Wang, Juan A et al. (2015) Nrf2-ARE activator carnosic acid decreases mitochondrial dysfunction, oxidative damage and neuronal cytoskeletal degradation following traumatic brain injury in mice. Exp Neurol 264:103-10
Yu, C G; Singh, R; Crowdus, C et al. (2014) Fenbendazole improves pathological and functional recovery following traumatic spinal cord injury. Neuroscience 256:163-9
Bolton, Amanda N; Saatman, Kathryn E (2014) Regional neurodegeneration and gliosis are amplified by mild traumatic brain injury repeated at 24-hour intervals. J Neuropathol Exp Neurol 73:933-47

Showing the most recent 10 out of 12 publications