Prostate cancer is the most common malignancy and third leading cause of cancer-related mortality in American men. Due to the ageing """"""""baby boomers"""""""", the number of men with localized prostate cancer will increase, as will the need for an accurate non-invasive imaging tool. Magnetic Resonance (MR) imaging has the ability to deliver precise anatomical mapping of tumor. Newer MR techniques allow for pharmacokinetic (PK) evaluation of prostate tissue. This functional aspect of MR imaging could contribute greatly to the accuracy of tumor detection and localization, and potentially serve as a guide for focal ablative therapy, or non-invasively assess functional aspects of prostate tissue microcirculation in response to neoadjuvant treatment. The objective of this study is therefore to determine if optimized MR analysis tools and algorithms can be used as a biomarker guide for targeted therapy and as a surrogate for disease recurrence in prostate cancer. We plan to achieve our objective through 4 specific aims: 1. To develop and implement imaging methodology and analysis tools for automated, robust quantitative assessment of prostate tumor volumetry and assessment of the functional properties (vascularity and permeability) using quantitative multi-parametric MR imaging (mpMRI). 2. To clinically validate the prostate mpMRI quantitative analysis tools described in Aim 1. We will perform a multivariate analysis of the results of the analyses tools, and patient-specific parameter maps for tumor localization (a summary statistic display) will be obtained and correlated with pathology at prostatectomy. 3. To determine the clinical use of the analysis tools as a biomarker guide for targeted therapy and as a surrogate for disease recurrence in low-risk prostate cancer patients. We will obtain mpMRI maps, detailing the index lesion and its margins, and register them with focal ablative therapy treatment planning images. Follow up mpMRI maps will be registered the pre-treatment maps to detect changes, and will be correlated with PSA to determine the """"""""expected"""""""" treatment margin and untreated prostate mpMRI characteristics. 4. To determine the clinical use of the analysis tools in evaluating tumor response to treatment with neoadjuvant androgen deprivation therapy (ADT) in patients with high-risk prostate cancer. We will assess the changes in mpMRI maps after 12 weeks of ADT to determine if prostate tumor vascular permeability changes may be a suitable predictor of pathological response, by correlation with prostatectomy specimens.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Project--Cooperative Agreements (U01)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-SRLB-V (M1))
Program Officer
Nordstrom, Robert J
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Brigham and Women's Hospital
United States
Zip Code
Velez, Erik; Fedorov, Andriy; Tuncali, Kemal et al. (2017) Pathologic correlation of transperineal in-bore 3-Tesla magnetic resonance imaging-guided prostate biopsy samples with radical prostatectomy specimen. Abdom Radiol (NY) 42:2154-2159
Glazer, Daniel I; Hassanzadeh, Elmira; Fedorov, Andriy et al. (2017) Diffusion-weighted endorectal MR imaging at 3T for prostate cancer: correlation with tumor cell density and percentage Gleason pattern on whole mount pathology. Abdom Radiol (NY) 42:918-925
Langkilde, Fredrik; Kobus, Thiele; Fedorov, Andriy et al. (2017) Evaluation of fitting models for prostate tissue characterization using extended-range b-factor diffusion-weighted imaging. Magn Reson Med :
Hassanzadeh, Elmira; Glazer, Daniel I; Dunne, Ruth M et al. (2017) Prostate imaging reporting and data system version 2 (PI-RADS v2): a pictorial review. Abdom Radiol (NY) 42:278-289
Fedorov, Andriy; Vangel, Mark G; Tempany, Clare M et al. (2017) Multiparametric Magnetic Resonance Imaging of the Prostate: Repeatability of Volume and Apparent Diffusion Coefficient Quantification. Invest Radiol 52:538-546
Hassanzadeh, Elmira; Alessandrino, Francesco; Olubiyi, Olutayo I et al. (2017) Comparison of quantitative apparent diffusion coefficient parameters with prostate imaging reporting and data system V2 assessment for detection of clinically significant peripheral zone prostate cancer. Abdom Radiol (NY) :
Ciris, Pelin Aksit; Balasubramanian, Mukund; Seethamraju, Ravi T et al. (2016) Characterization of gradient echo signal decays in healthy and cancerous prostate at 3T improves with a Gaussian augmentation of the mono-exponential (GAME) model. NMR Biomed 29:999-1009
Fedorov, Andriy; Tuncali, Kemal; Panych, Lawrence P et al. (2016) Segmented diffusion-weighted imaging of the prostate: Application to transperineal in-bore 3T MR image-guided targeted biopsy. Magn Reson Imaging 34:1146-54
Yankeelov, Thomas E; Mankoff, David A; Schwartz, Lawrence H et al. (2016) Quantitative Imaging in Cancer Clinical Trials. Clin Cancer Res 22:284-90
Mehrtash, Alireza; Gupta, Sandeep N; Shanbhag, Dattesh et al. (2016) Bolus arrival time and its effect on tissue characterization with dynamic contrast-enhanced magnetic resonance imaging. J Med Imaging (Bellingham) 3:014503

Showing the most recent 10 out of 33 publications