No cures exist, but the number of Parkinson's patients is expected to nearly double to 9.3 million in 2030. Two roadblocks impede progress on disease-modifying therapeutics. Current clinical trials are handicapped by late diagnosis, relying on impaired movements that occur when underlying neuropathology has far advanced. Moreover, in phase II clinical trials, testing safety and tolerability of a compound is straightforward, but drug effects on the underlying disease processes cannot be detected by current symptom-based measures. Here we propose a specific and a general strategy to overcome these roadblocks. More than 90,000 non-protein coding, regulatory RNAs may account for the complexity of the human brain in health and disease. Thousands of these previously hidden RNAs abound in dopaminergic neurons and regulate Parkinson's gene expression and bioenergetics processes involved in the disease onset. Regulatory RNAs integrate environmental, epigenetic, and genetic variation and directly reflect altered physiology without translation into protein. This offers a potentially ground breaking opportunity for biomarker development. Initially, we will systematically delineate all non-coding RNAs associated with incipient Parkinson's neuropathology in dopamine neurons laser-captured from 100 human brains using massively parallel sequencing and unlimited transcriptome reconstruction. Then, we will translate regulatory RNAs linked to the earliest neuropathological processes into digital biomarkers detectable in bloodstream and cerebrospinal fluid of 242 and 167 subjects, respectively. To build a generally useful express lane for biomarker development we propose a Harvard-NINDS partnership. It will leverage an unparalleled infrastructure and deliver a longitudinal Parkinson's biobank -- a catalytic, open platform for jump-starting the discovery and validation of PD biomarkers. Ancillary cerebrospinal fluid collection will be performed in the Harvard NeuroDiscovery Center Biomarker Study, a longitudinal, case-control study that already tracks clinical phenotypes and linked biospecimens of >1,886 individuals with Parkinson's disease and controls. This study will discover and translate viable biomarkers for the early detection of Parkinson's disease processes and contribute to a generally useful express lane for biomarkers development.

Public Health Relevance

No cures exist, but the number of Parkinson's patients is expected to nearly double to 9.3 million in 2030 posing an increasing threat to public health with annual costs estimated at $10.8 billion in the US alone. We propose a specific and a general strategy to overcome two critical roadblocks that impede progress on developing disease-modifying therapeutics.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project--Cooperative Agreements (U01)
Project #
5U01NS082157-02
Application #
8554933
Study Section
Special Emphasis Panel (ZNS1-SRB-J (02))
Program Officer
Gwinn, Katrina
Project Start
2012-09-30
Project End
2017-08-31
Budget Start
2013-09-01
Budget End
2014-08-31
Support Year
2
Fiscal Year
2013
Total Cost
$506,440
Indirect Cost
$211,711
Name
Brigham and Women's Hospital
Department
Type
DUNS #
030811269
City
Boston
State
MA
Country
United States
Zip Code
02115
Rosenthal, Liana S; Drake, Daniel; Alcalay, Roy N et al. (2016) The NINDS Parkinson's disease biomarkers program. Mov Disord 31:915-23
Malishkevich, Anna; Marshall, Gad A; Schultz, Aaron P et al. (2016) Blood-Borne Activity-Dependent Neuroprotective Protein (ADNP) is Correlated with Premorbid Intelligence, Clinical Stage, and Alzheimer's Disease Biomarkers. J Alzheimers Dis 50:249-60
Takeda, Shuko; Commins, Caitlin; DeVos, Sarah L et al. (2016) Seed-competent high-molecular-weight tau species accumulates in the cerebrospinal fluid of Alzheimer's disease mouse model and human patients. Ann Neurol 80:355-67
Bakshi, Rachit; Mittal, Shuchi; Liao, Zhixiang et al. (2016) A Feed-Forward Circuit of Endogenous PGC-1α and Estrogen Related Receptor α Regulates the Neuronal Electron Transport Chain. Parkinsons Dis 2016:2405176
Locascio, Joseph J; Eberly, Shirley; Liao, Zhixiang et al. (2015) Association between α-synuclein blood transcripts and early, neuroimaging-supported Parkinson's disease. Brain 138:2659-71
Nalls, Mike A; McLean, Cory Y; Rick, Jacqueline et al. (2015) Diagnosis of Parkinson's disease on the basis of clinical and genetic classification: a population-based modelling study. Lancet Neurol 14:1002-9
Doss, Sarah; Wandinger, Klaus-Peter; Hyman, Bradley T et al. (2014) High prevalence of NMDA receptor IgA/IgM antibodies in different dementia types. Ann Clin Transl Neurol 1:822-32
Cebrián, Carolina; Zucca, Fabio A; Mauri, Pierluigi et al. (2014) MHC-I expression renders catecholaminergic neurons susceptible to T-cell-mediated degeneration. Nat Commun 5:3633
Ziegler, David A; Ashourian, Paymon; Wonderlick, Julien S et al. (2014) Motor impulsivity in Parkinson disease: associations with COMT and DRD2 polymorphisms. Scand J Psychol 55:278-86
Cesani, Martina; Cavalca, Eleonora; Macco, Romina et al. (2014) Metallothioneins as dynamic markers for brain disease in lysosomal disorders. Ann Neurol 75:127-37

Showing the most recent 10 out of 14 publications