No cures exist, but the number of Parkinson's patients is expected to nearly double to 9.3 million in 2030. Two roadblocks impede progress on disease-modifying therapeutics. Current clinical trials are handicapped by late diagnosis, relying on impaired movements that occur when underlying neuropathology has far advanced. Moreover, in phase II clinical trials, testing safety and tolerability of a compound is straightforward, but drug effects on the underlying disease processes cannot be detected by current symptom-based measures. Here we propose a specific and a general strategy to overcome these roadblocks. More than 90,000 non-protein coding, regulatory RNAs may account for the complexity of the human brain in health and disease. Thousands of these previously hidden RNAs abound in dopaminergic neurons and regulate Parkinson's gene expression and bioenergetics processes involved in the disease onset. Regulatory RNAs integrate environmental, epigenetic, and genetic variation and directly reflect altered physiology without translation into protein. This offers a potentially ground breaking opportunity for biomarker development. Initially, we will systematically delineate all non-coding RNAs associated with incipient Parkinson's neuropathology in dopamine neurons laser-captured from 100 human brains using massively parallel sequencing and unlimited transcriptome reconstruction. Then, we will translate regulatory RNAs linked to the earliest neuropathological processes into digital biomarkers detectable in bloodstream and cerebrospinal fluid of 242 and 167 subjects, respectively. To build a generally useful express lane for biomarker development we propose a Harvard-NINDS partnership. It will leverage an unparalleled infrastructure and deliver a longitudinal Parkinson's biobank -- a catalytic, open platform for jump-starting the discovery and validation of PD biomarkers. Ancillary cerebrospinal fluid collection will be performed in the Harvard NeuroDiscovery Center Biomarker Study, a longitudinal, case-control study that already tracks clinical phenotypes and linked biospecimens of >1,886 individuals with Parkinson's disease and controls. This study will discover and translate viable biomarkers for the early detection of Parkinson's disease processes and contribute to a generally useful express lane for biomarkers development.

Public Health Relevance

No cures exist, but the number of Parkinson's patients is expected to nearly double to 9.3 million in 2030 posing an increasing threat to public health with annual costs estimated at $10.8 billion in the US alone. We propose a specific and a general strategy to overcome two critical roadblocks that impede progress on developing disease-modifying therapeutics.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project--Cooperative Agreements (U01)
Project #
1U01NS082157-01
Application #
8473513
Study Section
Special Emphasis Panel (ZNS1-SRB-J (02))
Program Officer
Gwinn, Katrina
Project Start
2012-09-30
Project End
2017-08-31
Budget Start
2012-09-30
Budget End
2013-08-31
Support Year
1
Fiscal Year
2012
Total Cost
$520,008
Indirect Cost
$224,549
Name
Brigham and Women's Hospital
Department
Type
DUNS #
030811269
City
Boston
State
MA
Country
United States
Zip Code
02115
Dong, Xianjun; Liao, Zhixiang; Gritsch, David et al. (2018) Enhancers active in dopamine neurons are a primary link between genetic variation and neuropsychiatric disease. Nat Neurosci 21:1482-1492
Mittal, Shuchi; Bjørnevik, Kjetil; Im, Doo Soon et al. (2017) ?2-Adrenoreceptor is a regulator of the ?-synuclein gene driving risk of Parkinson's disease. Science 357:891-898
Liu, Ganqiang; Locascio, Joseph J; Corvol, Jean-Christophe et al. (2017) Prediction of cognition in Parkinson's disease with a clinical-genetic score: a longitudinal analysis of nine cohorts. Lancet Neurol 16:620-629
Gwinn, Katrina; David, Karen K; Swanson-Fischer, Christine et al. (2017) Parkinson's disease biomarkers: perspective from the NINDS Parkinson's Disease Biomarkers Program. Biomark Med 11:451-473
Manocha, Gunjan Dhawan; Floden, Angela Marie; Puig, Kendra Lynn et al. (2017) Defining the contribution of neuroinflammation to Parkinson's disease in humanized immune system mice. Mol Neurodegener 12:17
Rosenthal, Liana S; Drake, Daniel; Alcalay, Roy N et al. (2016) The NINDS Parkinson's disease biomarkers program. Mov Disord 31:915-23
Hill-Burns, Erin M; Ross, Owen A; Wissemann, William T et al. (2016) Identification of genetic modifiers of age-at-onset for familial Parkinson's disease. Hum Mol Genet 25:3849-3862
Bakshi, Rachit; Mittal, Shuchi; Liao, Zhixiang et al. (2016) A Feed-Forward Circuit of Endogenous PGC-1? and Estrogen Related Receptor ? Regulates the Neuronal Electron Transport Chain. Parkinsons Dis 2016:2405176
Takeda, Shuko; Commins, Caitlin; DeVos, Sarah L et al. (2016) Seed-competent high-molecular-weight tau species accumulates in the cerebrospinal fluid of Alzheimer's disease mouse model and human patients. Ann Neurol 80:355-67
Liu, Ganqiang; Boot, Brendon; Locascio, Joseph J et al. (2016) Specifically neuropathic Gaucher's mutations accelerate cognitive decline in Parkinson's. Ann Neurol 80:674-685

Showing the most recent 10 out of 21 publications