Quantitative brain imaging biomarkers now play a central role in clinical trials for AD, as they may permit a more direct assessment of the effects of a therapy on brain function, amyloid load, and rate of neurodegeneration. Such information complements clinical and cognitive data points to provide a more complete picture of an intervention's putative disease-modifying effects. Further, clinical brain imaging and central clinical overread may be required for monitoring patient safety during a trial. However, the complexity of imaging data requires ready access to specialized neuroimaging expertise to assist in developing and maintaining state-of-the-art approaches in study design as well as data management, analysis, and sharing. No single institution houses such a wide array of expertise, and the rapid evolution of the field calls for an organizational structure that allows project leaders flexibility in selecting best available design and analysis approaches, while maintaining consistency through centralized data upload and management.

Public Health Relevance

The overarching objective of the imaging core is to provide the infrastructure necessary for collection, management, and analysis of PET and MRI biomarkers in ADCS clinical trials and assist in widely sharing these data upon trial completion.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Research Program--Cooperative Agreements (U19)
Project #
5U19AG010483-23
Application #
8601650
Study Section
Special Emphasis Panel (ZAG1-ZIJ-7)
Project Start
Project End
Budget Start
2013-12-01
Budget End
2014-11-30
Support Year
23
Fiscal Year
2014
Total Cost
$120,642
Indirect Cost
$28,903
Name
University of California San Diego
Department
Type
DUNS #
804355790
City
La Jolla
State
CA
Country
United States
Zip Code
92093
Rentz, Dorene M; Dekhtyar, Maria; Sherman, Julia et al. (2016) The Feasibility of At-Home iPad Cognitive Testing For Use in Clinical Trials. J Prev Alzheimers Dis 3:8-12
Graff-Radford, Jonathan; Madhavan, Malini; Vemuri, Prashanthi et al. (2016) Atrial fibrillation, cognitive impairment, and neuroimaging. Alzheimers Dement 12:391-8
Johnson, Keith A; Schultz, Aaron; Betensky, Rebecca A et al. (2016) Tau positron emission tomographic imaging in aging and early Alzheimer disease. Ann Neurol 79:110-9
Kennedy, Richard E; Cutter, Gary R; Wang, Guoqiao et al. (2016) Post Hoc Analyses of ApoE Genotype-Defined Subgroups in Clinical Trials. J Alzheimers Dis 50:1205-15
Reiman, Eric M; Langbaum, Jessica B; Tariot, Pierre N et al. (2016) CAP--advancing the evaluation of preclinical Alzheimer disease treatments. Nat Rev Neurol 12:56-61
Raman, Mekala R; Schwarz, Christopher G; Murray, Melissa E et al. (2016) An MRI-Based Atlas for Correlation of Imaging and Pathologic Findings in Alzheimer's Disease. J Neuroimaging 26:264-8
Gauthier, Serge; Feldman, Howard H; Schneider, Lon S et al. (2016) Efficacy and safety of tau-aggregation inhibitor therapy in patients with mild or moderate Alzheimer's disease: a randomised, controlled, double-blind, parallel-arm, phase 3 trial. Lancet 388:2873-2884
Le, Michelle H; Weissmiller, April M; Monte, Louise et al. (2016) Functional Impact of Corticotropin-Releasing Factor Exposure on Tau Phosphorylation and Axon Transport. PLoS One 11:e0147250
Tarrant, Sarah D; Bardach, Shoshana H; Bates, Kendra et al. (2016) The Effectiveness of Small-group Community-based Information Sessions on Clinical Trial Recruitment for Secondary Prevention of Alzheimer's Disease. Alzheimer Dis Assoc Disord :
Zhang, Cheng; Kuo, Ching-Chang; Moghadam, Setareh H et al. (2016) Corticotropin-releasing factor receptor-1 antagonism mitigates beta amyloid pathology and cognitive and synaptic deficits in a mouse model of Alzheimer's disease. Alzheimers Dement 12:527-37

Showing the most recent 10 out of 402 publications