Renal transplantation represents first-line therapy for patients with ESRD, with the most recent data documenting significant one-year success rates (with 94% graft survival for deceased donor transplants, and 98% graft survival with living donor allografts). However, patients continue to face high morbidity and mortality after transplant, both from chronic allograft rejection and from the toxicities associated with standard immunosuppressive regimens. Given these dual risks, the ultimate goal in this field is the induction of immune tolerance after transplantation, which promises life-long acceptance of an allograft, without the need for ongoing immunosuppression and importantly, with preservation of protective immunity. While novel pharmacologic and antibody-based therapies represent real promise in terms of greatly prolonging allograft survival and reducing off-target toxicities, murine studies strongly suggest that the most robust strategies for inducing immune tolerance incorporate cellular therapies, including both mixed chimerism induction (especially in combination with T cell costimulation blockade) and reaulatory T cell (Treq)-based approaches. Both of these therapies hold the promise of fundamentally resetting recipient immunity in favor of allograft acceptance and thus provide a direct pathway towards immune tolerance induction. Therefore, in this application, we will address mixed-chimerism- and Treg-based tolerance induction through the following Specific Aims:
Specific Aim #1 : To induce immune tolerance to a renal allograft through the induction of stable, full spectrum mixed-hematopoietic chimerism in the setting of T cell costimulation blockade.
Specific Aim #2 : To utilize regulatory T cells to consolidate mixed-chimerism and to induce immune tolerance during renal transplantation.

Public Health Relevance

Renal transplantation represents first-line therapy for patients with end-stage renal disease, with over 16,000 transplants being performed each year. While most patients initially do well post-transplant, they almost invariably face significant toxicities, including off-target complications of non-specific immunosuppression and the constant risk of chronic rejection. The ultimate answer for all of these issues is immune tolerance induction. This application seeks to define clinically-relevant cellular therapies for tolerance-induction, which could improve the lives of tens of thousands of transplant patients each year.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Research Program--Cooperative Agreements (U19)
Project #
Application #
Study Section
Special Emphasis Panel (ZAI1-MFH-I)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Emory University
United States
Zip Code
Singh, K; Stempora, L; Harvey, R D et al. (2014) Superiority of rapamycin over tacrolimus in preserving nonhuman primate Treg half-life and phenotype after adoptive transfer. Am J Transplant 14:2691-703
Sullivan, Jeremy A; Adams, Andrew B; Burlingham, William J (2014) The emerging role of TH17 cells in organ transplantation. Transplantation 97:483-9
Pathiraja, Vimukthi; Matar, Abraham J; Gusha, Ashley et al. (2013) Leukapheresis protocol for nonhuman primates weighing less than 10 kg. J Am Assoc Lab Anim Sci 52:70-7
Huang, Alex Y; Haining, W Nicholas; Barkauskas, Deborah S et al. (2013) Viewing transplantation immunology through today's lens: new models, new imaging, and new insights. Biol Blood Marrow Transplant 19:S44-51
Lowe, M C; Badell, I R; Turner, A P et al. (2013) Belatacept and sirolimus prolong nonhuman primate islet allograft survival: adverse consequences of concomitant alefacept therapy. Am J Transplant 13:312-9
Page, Eugenia K; Courtney, Cynthia L; Sharma, Prachi et al. (2013) Post-transplant lymphoproliferative disorder associated with immunosuppressive therapy for renal transplantation in rhesus macaques (Macaca mulatta). Exp Toxicol Pathol 65:1019-24
Badell, I R; Russell, M C; Cardona, K et al. (2012) CTLA4Ig prevents alloantibody formation following nonhuman primate islet transplantation using the CD40-specific antibody 3A8. Am J Transplant 12:1918-23
Badell, I R; Thompson, P W; Turner, A P et al. (2012) Nondepleting anti-CD40-based therapy prolongs allograft survival in nonhuman primates. Am J Transplant 12:126-35
Johnson, Z P; Eady, R D; Ahmad, S F et al. (2012) Immunogenetic Management Software: a new tool for visualization and analysis of complex immunogenetic datasets. Immunogenetics 64:329-36
Page, A; Srinivasan, S; Singh, K et al. (2012) CD40 blockade combines with CTLA4Ig and sirolimus to produce mixed chimerism in an MHC-defined rhesus macaque transplant model. Am J Transplant 12:115-25

Showing the most recent 10 out of 29 publications