Topical microbicides, a female-controlled strategy to prevent HIV, are crucial in stemming the pandemic. An optimal microbicide should protect against infection without disrupting the mucosal environment or its mediators of host defense. This project focuses on the preclinical evaluation of combination microbicides with the goal of identifying safe and effective prevention strategies. Combinations that target at least two steps in the HIV life cycle will be prioritized, thus providing protection against circulating resistant viruses and reducing the risk that the drugs will select for resistant variants. This will be accomplished through the dual activities of a single antiretroviral drug (ARV), a pyrimidinedione, which is a potent reverse transcriptase inhibitor and also blocks HIV entry, or by combining two different ARV microbicides. The biological synergy between HIV and HSV will be addressed by evaluating the possibility of delivering acyclovir in combination with the ARV microbicides to provide local sustained suppression of HSV replication. The rationale for focusing on HSV suppression reflects the pre-existing high prevalence of HSV-2 (60-90%) in the developing world and the overwhelming biological and epidemiological evidence demonstrating that subclinical HSV recurrences, which are quite common, increase the risk for HIV acquisition. Critical gaps in microbicide development are the lack of biomarkers predictive of safety and efficacy. This project will address these gaps by developing and expanding novel assays, which focus on the interactions between microbicides and the vaginal environment, using primary cells, explant cultures, and a dual chamber culture system and murine models. The proposed safety models focus on the impact of sustained drug delivery on epithelial integrity and genital tract mucosal immunity. The biological significance of any observed changes will be assessed by examining changes in the ability of HIV to traverse the epithelial barrier in the dual culture model and changes in the susceptibility to genital herpes in the mouse. Results obtained from these studies will provide crucial information for the advancement of novel safe and effective combination microbicides.

Public Health Relevance

The extensive pre-clinical evaluation of candidate components for combination microbicides and intravaginal ring formulations will lead to the successful advancement of novel prevention strategies for HIV. These studies will help to establish preclinical biomarkers predictive of safety and efficacy.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program--Cooperative Agreements (U19)
Project #
5U19AI076980-04
Application #
8380236
Study Section
Special Emphasis Panel (ZAI1-BP-A)
Project Start
Project End
2014-08-31
Budget Start
2012-09-01
Budget End
2014-08-31
Support Year
4
Fiscal Year
2012
Total Cost
$574,983
Indirect Cost
$164,878
Name
Albert Einstein College of Medicine
Department
Type
DUNS #
110521739
City
Bronx
State
NY
Country
United States
Zip Code
10461
Rastogi, Rachna; Su, Jonathan; Mahalingam, Alamelu et al. (2016) Engineering and characterization of simplified vaginal and seminal fluid simulants. Contraception 93:337-46
Keller, Marla J; Mesquita, Pedro M; Marzinke, Mark A et al. (2016) A phase 1 randomized placebo-controlled safety and pharmacokinetic trial of a tenofovir disoproxil fumarate vaginal ring. AIDS 30:743-51
Teller, Ryan S; Malaspina, David C; Rastogi, Rachna et al. (2016) Controlling the hydration rate of a hydrophilic matrix in the core of an intravaginal ring determines antiretroviral release. J Control Release 224:176-83
Smith, James M; Srinivasan, Priya; Teller, Ryan S et al. (2015) Tenofovir disoproxil fumarate intravaginal ring protects high-dose depot medroxyprogesterone acetate-treated macaques from multiple SHIV exposures. J Acquir Immune Defic Syndr 68:1-5
Nixon, Briana; Jandl, Thomas; Teller, Ryan S et al. (2014) Vaginally delivered tenofovir disoproxil fumarate provides greater protection than tenofovir against genital herpes in a murine model of efficacy and safety. Antimicrob Agents Chemother 58:1153-60
Teller, Ryan S; Rastogi, Rachna; Johnson, Todd J et al. (2014) Intravaginal flux controlled pump for sustained release of macromolecules. Pharm Res 31:2344-53
Srinivasan, Priya; Dinh, Chuong; Zhang, Jining et al. (2014) Pharmacokinetic evaluation of tenofovir disoproxil fumarate released from an intravaginal ring in pigtailed macaques after 6 months of continuous use. J Med Primatol 43:364-9
Herold, Betsy C; Dezzutti, Charlene S; Richardson, Barbra A et al. (2014) Antiviral activity of genital tract secretions after oral or topical tenofovir pre-exposure prophylaxis for HIV-1. J Acquir Immune Defic Syndr 66:65-73
Nixon, Briana; Stefanidou, Martha; Mesquita, Pedro M M et al. (2013) Griffithsin protects mice from genital herpes by preventing cell-to-cell spread. J Virol 87:6257-69
Mesquita, Pedro M M; Srinivasan, Priya; Johnson, Todd J et al. (2013) Novel preclinical models of topical PrEP pharmacodynamics provide rationale for combination of drugs with complementary properties. Retrovirology 10:113

Showing the most recent 10 out of 21 publications