Among our best tools for the control of malaria are effective antimalarial drugs and insecticides, but these are jeopardized by increasing resistance of malaria parasites and anopheline mosquitoes. Parasite and mosquito resistance are partially characterized, and assays are available to identify certain genotypes associated with resistance. However, additional studies to identify novel markers of resistance, especially to newer drugs and insecticides, are needed. This project will utilize available tools to conduct efficient surveys of the prevalence of known resistance markers across Uganda, develop new tools to improve surveillance methods, search for new markers to allow us to track the development of resistance to newer drugs and insecticides, and identify associations between specific intervenfions and the development of resistance. We hypothesize that benefits of current malaria control measures will be challenged by increasing resistance in malaria parasites and anopheline vectors. We further hypothesize that the rate of resistance development will vary depending on the level of malaria transmission and extent of implementation of control measures. We will test these hypotheses with serial surveys for parasite and mosquito resistance mediators at sites with varied malaria transmission intensity. We also predict that newer agents will select for not-yet-described resistance mediators. We will search for these novel mediators of resistance in samples under drug and insecticide selection pressure.
Our specific aims will be: 1) to compare the prevalence of molecular markers of antimalarial drug resistance by serial surveillance at diverse sites in Uganda with varied implementation of control measures, 2) to compare the prevalence of molecular markers of anopheline insecticide resistance by serial surveillance at diverse sites in Uganda with varied implementation of control measures, and 3) to improve surveillance tools and search for novel mediators of antimalarial and insecticide resistance using transcriptome and high throughput sequencing techniques. We anficlpate that this project will offer a detailed characterization of the progression of resistance to drugs and insecticides in Uganda over time and also help us to identify novel mechanisms of resistance.

Public Health Relevance

Among our best tools for the control of malaria are effecfive drugs and insecticides. However, effective drugs and insecticides are jeopardized by increasing resistance. This project will utilize samples of malaria parasites and mosquitoes collected at mulfiple locafions in Uganda to better characterize the nature of resistance, and thereby improve the ability to circumvent resistance and best control malaria.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program--Cooperative Agreements (U19)
Project #
5U19AI089674-05
Application #
8698622
Study Section
Special Emphasis Panel (ZAI1)
Project Start
Project End
Budget Start
2014-07-01
Budget End
2015-06-30
Support Year
5
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of California San Francisco
Department
Type
DUNS #
City
San Francisco
State
CA
Country
United States
Zip Code
94143
Yeka, Adoke; Kigozi, Ruth; Conrad, Melissa D et al. (2016) Artesunate/Amodiaquine Versus Artemether/Lumefantrine for the Treatment of Uncomplicated Malaria in Uganda: A Randomized Trial. J Infect Dis 213:1134-42
Brady, Oliver J; Godfray, H Charles J; Tatem, Andrew J et al. (2016) Vectorial capacity and vector control: reconsidering sensitivity to parameters for malaria elimination. Trans R Soc Trop Med Hyg 110:107-17
Sullivan, Richard T; Ssewanyana, Isaac; Wamala, Samuel et al. (2016) B cell sub-types following acute malaria and associations with clinical immunity. Malar J 15:139
Zhao, Xia; Smith, David L; Tatem, Andrew J (2016) Exploring the spatiotemporal drivers of malaria elimination in Europe. Malar J 15:122
Huber, John H; Johnston, Geoffrey L; Greenhouse, Bryan et al. (2016) Quantitative, model-based estimates of variability in the generation and serial intervals of Plasmodium falciparum malaria. Malar J 15:490
Donnelly, Martin J; Isaacs, Alison T; Weetman, David (2016) Identification, Validation, and Application of Molecular Diagnostics for Insecticide Resistance in Malaria Vectors. Trends Parasitol 32:197-206
Farrington, Lila A; Jagannathan, Prasanna; McIntyre, Tara I et al. (2016) Frequent Malaria Drives Progressive Vδ2 T-Cell Loss, Dysfunction, and CD16 Up-regulation During Early Childhood. J Infect Dis 213:1483-90
Alegana, Victor A; Atkinson, Peter M; Lourenço, Christopher et al. (2016) Advances in mapping malaria for elimination: fine resolution modelling of Plasmodium falciparum incidence. Sci Rep 6:29628
Odorizzi, Pamela M; Feeney, Margaret E (2016) Impact of In Utero Exposure to Malaria on Fetal T Cell Immunity. Trends Mol Med 22:877-888
Ruktanonchai, Nick W; DeLeenheer, Patrick; Tatem, Andrew J et al. (2016) Identifying Malaria Transmission Foci for Elimination Using Human Mobility Data. PLoS Comput Biol 12:e1004846

Showing the most recent 10 out of 122 publications