The nonhuman primate SHIV model has played a crucial role in the development of anti-HIV treatment strategies. Studies with a number of pathogenic SHIV viruses have been performed at our Primate Center. This model has shown distinct disease patterns, which directly parallel the spectrum of disease seen in HIV-infected patients. SIV- and SHIV-infected monkeys have similar clinical and surrogate markers of infection such as antiviral antibodies, hematopoietic abnormalities, and virus load in the peripheral circulation and lymphoid tissues as HIV-infected patients. The importance of the SIV- and SHIV-infected monkey model lies in the fact that, unlike the human population, the timing of infection can be controlled and findings can be quantified and directly correlated with disease under controlled conditions. SHIV chimeras were created by inserting the HIV-1 env, rev, tat, and vpu genes on a background of SIVmac and were shown to readily infect macaques. By animal passage starting with an initially avirulent SHIV, a number of laboratories developed highly virulent strains. The SHIV/macaque model offers all the advantages of the SIVmac/macaque model. Infected macaques develop CD4[+] T-cell loss usually in a few weeks and develop AIDS at intervals ranging from a few weeks to two years. Histological changes in the lymphoid and other tissues closely resemble those seen in human AIDS. Infected macaques also develop organ-specific disease, including encephalitis. Thus, the SHIV/macaque model is a superb model to study AIDS gene therapy strategies. The M. nemestrina model is also an outstanding model for the testing of genetically modified stem cells. We have published extensively on the use of M. nemestrina monkeys to improve gene transfer to hematopoietic stem cells. The core leader, Dr. Kiem, has extensive experience with nonhuman primate studies. Dr. Kiem has more than 15 years experience with nonhuman primate transplantation and cellular modification studies. Thus, the specific aim of this core will be as follows: 1) Assist investigator with the CD34 isolation and ex vivo manipulation. 2) Critical care following transplantation until hematopoietic recovery 3) In vivo selection of gene modified cells in monkeys 4) Peripheral blood harvest by apheresis

Public Health Relevance

The proposed research will use a highly clinically relevant monkey model to test the efficacy and safety of gene therapy strategies for the treatment of AIDS. If successful, the proposed studies will lead to novel stem cell gene therapy approaches to protect individuals from AIDS.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program--Cooperative Agreements (U19)
Project #
5U19AI096111-04
Application #
8691710
Study Section
Special Emphasis Panel (ZAI1)
Project Start
Project End
Budget Start
2014-07-01
Budget End
2015-06-30
Support Year
4
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Fred Hutchinson Cancer Research Center
Department
Type
DUNS #
City
Seattle
State
WA
Country
United States
Zip Code
98109
Colonna, Lucrezia; Peterson, Christopher W; Schell, John B et al. (2018) Evidence for persistence of the SHIV reservoir early after MHC haploidentical hematopoietic stem cell transplantation. Nat Commun 9:4438
Paul, Biswajit; Ibarra, Guillermo S Romano; Hubbard, Nicholas et al. (2018) Efficient Enrichment of Gene-Modified Primary T Cells via CCR5-Targeted Integration of Mutant Dihydrofolate Reductase. Mol Ther Methods Clin Dev 9:347-357
Dubé, Karine; Dee, Lynda; Evans, David et al. (2018) Perceptions of Equipoise, Risk-Benefit Ratios, and ""Otherwise Healthy Volunteers"" in the Context of Early-Phase HIV Cure Research in the United States: A Qualitative Inquiry. J Empir Res Hum Res Ethics 13:3-17
Adair, Jennifer E; Kubek, Sara P; Kiem, Hans-Peter (2017) Hematopoietic Stem Cell Approaches to Cancer. Hematol Oncol Clin North Am 31:897-912
Reeves, Daniel B; Peterson, Christopher W; Kiem, Hans-Peter et al. (2017) Autologous Stem Cell Transplantation Disrupts Adaptive Immune Responses during Rebound Simian/Human Immunodeficiency Virus Viremia. J Virol 91:
Niyonzima, Nixon; Lambert, Abigail R; Werther, Rachel et al. (2017) Tuning DNA binding affinity and cleavage specificity of an engineered gene-targeting nuclease via surface display, flow cytometry and cellular analyses. Protein Eng Des Sel 30:503-522
Peterson, Christopher W; Benne, Clarisse; Polacino, Patricia et al. (2017) Loss of immune homeostasis dictates SHIV rebound after stem-cell transplantation. JCI Insight 2:e91230
Reeves, Daniel B; Duke, Elizabeth R; Hughes, Sean M et al. (2017) Anti-proliferative therapy for HIV cure: a compound interest approach. Sci Rep 7:4011
Dubé, Karine; Taylor, Jeff; Sylla, Laurie et al. (2017) 'Well, It's the Risk of the Unknown… Right?': A Qualitative Study of Perceived Risks and Benefits of HIV Cure Research in the United States. PLoS One 12:e0170112
Chiarelli, Peter A; Revia, Richard A; Stephen, Zachary R et al. (2017) Nanoparticle Biokinetics in Mice and Nonhuman Primates. ACS Nano 11:9514-9524

Showing the most recent 10 out of 56 publications