The re-emergence of resistant cancer cells after initial therapy is one of the great unsolved, and deadly, problems in oncology, and a fundamental problem of evolution under stress. This project is aimed at understanding, from general principles of physics, ecology, and biology, why recurrence of resistant cancer cells seems to be a universal phenomenon in cancer. We believe that evolution in small, stressed habitats is the key to the rapid and inevitable re-emergence of resistance. The physical technology that drives this Project uses microfabrication of tiny, stressed habitats to test these Ideas. Modern techniques of physical probes, genomics, proteomics and nanotechnology will allow us to analyze the evolutionary path of these emergent resistant cells.

Public Health Relevance

Perhaps the evolution of resistance in cancer is something we are making worse and ultimately more lethal with our present treatment of cancer. We hope that by truly understanding how resistance evolves, we may develop new therapies which control cancer to the point where it is survivable, if not cured.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54CA143803-05
Application #
8535630
Study Section
Special Emphasis Panel (ZCA1-SRLB-9 (O1))
Program Officer
Franca-Koh, Jonathan C
Project Start
2009-09-28
Project End
2014-07-31
Budget Start
2013-08-01
Budget End
2014-07-31
Support Year
5
Fiscal Year
2013
Total Cost
$2,479,751
Indirect Cost
$553,486
Name
Princeton University
Department
Physics
Type
Schools of Arts and Sciences
DUNS #
002484665
City
Princeton
State
NJ
Country
United States
Zip Code
08544
Jung, Younghun; Decker, Ann M; Wang, Jingcheng et al. (2016) Endogenous GAS6 and Mer receptor signaling regulate prostate cancer stem cells in bone marrow. Oncotarget 7:25698-711
Han, Weijing; Chen, Shaohua; Yuan, Wei et al. (2016) Oriented collagen fibers direct tumor cell intravasation. Proc Natl Acad Sci U S A 113:11208-11213
Yumoto, Kenji; Eber, Matthew R; Wang, Jingcheng et al. (2016) Axl is required for TGF-β2-induced dormancy of prostate cancer cells in the bone marrow. Sci Rep 6:36520
Piotrowski-Daspit, Alexandra S; Tien, Joe; Nelson, Celeste M (2016) Interstitial fluid pressure regulates collective invasion in engineered human breast tumors via Snail, vimentin, and E-cadherin. Integr Biol (Camb) 8:319-31
Gascard, Philippe; Tlsty, Thea D (2016) Carcinoma-associated fibroblasts: orchestrating the composition of malignancy. Genes Dev 30:1002-19
Amend, Sarah R; Roy, Sounak; Brown, Joel S et al. (2016) Ecological paradigms to understand the dynamics of metastasis. Cancer Lett 380:237-42
van der Toom, Emma E; Verdone, James E; Pienta, Kenneth J (2016) Disseminated tumor cells and dormancy in prostate cancer metastasis. Curr Opin Biotechnol 40:9-15
Amend, Sarah R; Valkenburg, Kenneth C; Pienta, Kenneth J (2016) Murine Hind Limb Long Bone Dissection and Bone Marrow Isolation. J Vis Exp :
Lee, Eunsohl; Wang, Jingcheng; Yumoto, Kenji et al. (2016) DNMT1 Regulates Epithelial-Mesenchymal Transition and Cancer Stem Cells, Which Promotes Prostate Cancer Metastasis. Neoplasia 18:553-66
Pan, Deng; Roy, Somdutta; Gascard, Philippe et al. (2016) SOX2, OCT3/4 and NANOG expression and cellular plasticity in rare human somatic cells requires CD73. Cell Signal 28:1923-1932

Showing the most recent 10 out of 84 publications