In AML tumor populations, there is strong evidence that a small population of leukemic stem cells (LSCs) gives rise to Clonogenic Leukemic Progenitor (CLPs) lacking self-renewal ability, but which further differentiate into leukemic blast cells. This parallels the normal hematopoietic cellular hierarchy (Figure 1). Post-mitotic blast cells comprise the major bulk of AML tumors. The origin of LSCs is not understood, although some evidence exists that they arise by acquisition of self-renewal ability in MPPs that have presumably inherited mutations from an HSC. In addition to being progenitors for more differentiated cells that comprise the bulk of AML tumors, LSCs can be transplanted to another host, resulting in formation of a new tumor. For preliminary results (see Section N4.2), we prospectively isolated and purified cell populations from stages of myeloid development, as well as from the AML tumor hierarchy. Using breakthrough single-cell technologies, we will dissect the AML LSC population. By applying novel experimental and computational approaches, our aim is to understand the role of differentiation in AML, and how self-renewal is established and maintained.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54CA149145-05
Application #
8628777
Study Section
Special Emphasis Panel (ZCA1-SRLB-C)
Project Start
Project End
Budget Start
2014-03-01
Budget End
2015-02-28
Support Year
5
Fiscal Year
2014
Total Cost
$283,309
Indirect Cost
Name
Stanford University
Department
Type
DUNS #
009214214
City
Stanford
State
CA
Country
United States
Zip Code
94305
Angst, Martin S; Fragiadakis, Gabriela K; Gaudillière, Brice et al. (2016) In Reply. Anesthesiology 124:1414-5
Li, Yulin; Deutzmann, Anja; Choi, Peter S et al. (2016) BIM mediates oncogene inactivation-induced apoptosis in multiple transgenic mouse models of acute lymphoblastic leukemia. Oncotarget 7:26926-34
Aghaeepour, Nima; Chattopadhyay, Pratip; Chikina, Maria et al. (2016) A benchmark for evaluation of algorithms for identification of cellular correlates of clinical outcomes. Cytometry A 89:16-21
Li, Yang I; van de Geijn, Bryce; Raj, Anil et al. (2016) RNA splicing is a primary link between genetic variation and disease. Science 352:600-4
Behbehani, Gregory K; Samusik, Nikolay; Bjornson, Zach B et al. (2015) Mass Cytometric Functional Profiling of Acute Myeloid Leukemia Defines Cell-Cycle and Immunophenotypic Properties That Correlate with Known Responses to Therapy. Cancer Discov 5:988-1003
Gentles, Andrew J; Newman, Aaron M; Liu, Chih Long et al. (2015) The prognostic landscape of genes and infiltrating immune cells across human cancers. Nat Med 21:938-45
O'Gorman, William E; Hsieh, Elena W Y; Savig, Erica S et al. (2015) Single-cell systems-level analysis of human Toll-like receptor activation defines a chemokine signature in patients with systemic lupus erythematosus. J Allergy Clin Immunol 136:1326-36
Jung, Namyoung; Dai, Bo; Gentles, Andrew J et al. (2015) An LSC epigenetic signature is largely mutation independent and implicates the HOXA cluster in AML pathogenesis. Nat Commun 6:8489
Zunder, Eli R; Lujan, Ernesto; Goltsev, Yury et al. (2015) A continuous molecular roadmap to iPSC reprogramming through progression analysis of single-cell mass cytometry. Cell Stem Cell 16:323-37
Goodson 3rd, William H; Lowe, Leroy; Carpenter, David O et al. (2015) Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: the challenge ahead. Carcinogenesis 36 Suppl 1:S254-96

Showing the most recent 10 out of 80 publications