In AML tumor populations, there is strong evidence that a small population of leukemic stem cells (LSCs) gives rise to Clonogenic Leukemic Progenitor (CLPs) lacking self-renewal ability, but which further differentiate into leukemic blast cells. This parallels the normal hematopoietic cellular hierarchy (Figure 1). Post-mitotic blast cells comprise the major bulk of AML tumors. The origin of LSCs is not understood, although some evidence exists that they arise by acquisition of self-renewal ability in MPPs that have presumably inherited mutations from an HSC. In addition to being progenitors for more differentiated cells that comprise the bulk of AML tumors, LSCs can be transplanted to another host, resulting in formation of a new tumor. For preliminary results (see Section N4.2), we prospectively isolated and purified cell populations from stages of myeloid development, as well as from the AML tumor hierarchy. Using breakthrough single-cell technologies, we will dissect the AML LSC population. By applying novel experimental and computational approaches, our aim is to understand the role of differentiation in AML, and how self-renewal is established and maintained.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54CA149145-05
Application #
8628777
Study Section
Special Emphasis Panel (ZCA1-SRLB-C)
Project Start
Project End
Budget Start
2014-03-01
Budget End
2015-02-28
Support Year
5
Fiscal Year
2014
Total Cost
$283,309
Indirect Cost
Name
Stanford University
Department
Type
DUNS #
009214214
City
Stanford
State
CA
Country
United States
Zip Code
94305
Anchang, Benedict; Davis, Kara L; Fienberg, Harris G et al. (2018) DRUG-NEM: Optimizing drug combinations using single-cell perturbation response to account for intratumoral heterogeneity. Proc Natl Acad Sci U S A 115:E4294-E4303
Good, Zinaida; Sarno, Jolanda; Jager, Astraea et al. (2018) Single-cell developmental classification of B cell precursor acute lymphoblastic leukemia at diagnosis reveals predictors of relapse. Nat Med 24:474-483
Banovich, Nicholas E; Li, Yang I; Raj, Anil et al. (2018) Impact of regulatory variation across human iPSCs and differentiated cells. Genome Res 28:122-131
Sinha, Subarna; Thomas, Daniel; Chan, Steven et al. (2017) Systematic discovery of mutation-specific synthetic lethals by mining pan-cancer human primary tumor data. Nat Commun 8:15580
Knowles, David A; Davis, Joe R; Edgington, Hilary et al. (2017) Allele-specific expression reveals interactions between genetic variation and environment. Nat Methods 14:699-702
O'Gorman, W E; Kong, D S; Balboni, I M et al. (2017) Mass cytometry identifies a distinct monocyte cytokine signature shared by clinically heterogeneous pediatric SLE patients. J Autoimmun :
Li, Yang I; van de Geijn, Bryce; Raj, Anil et al. (2016) RNA splicing is a primary link between genetic variation and disease. Science 352:600-4
Anchang, Benedict; Hart, Tom D P; Bendall, Sean C et al. (2016) Visualization and cellular hierarchy inference of single-cell data using SPADE. Nat Protoc 11:1264-79
Angst, Martin S; Fragiadakis, Gabriela K; Gaudillière, Brice et al. (2016) In Reply. Anesthesiology 124:1414-5
Aghaeepour, Nima; Chattopadhyay, Pratip; Chikina, Maria et al. (2016) A benchmark for evaluation of algorithms for identification of cellular correlates of clinical outcomes. Cytometry A 89:16-21

Showing the most recent 10 out of 86 publications