The use of magnetic nanoparticle therapy has promise as a cell specific/high therapeutic ratio, low-toxicity cancer therapy. The most attractive feature of mNP-AMF cancer therapy is the ability to deliver mNP to individual cancer cells via peptide targeting and to selectively kill such cells by exciting the mNPs with a noninvasive/ safe alternating magnetic field (AMF). Project 3 will perform a variety of fundamental studies required to support planned clinical trials for breast cancer using mNP-AMF therapy at Dartmouth. Our preliminary data demonstrate the ability to completely control murine breast tumors with mNP-AMF therapy.
Aim 1 investigates performance impact of a variety of mNP variables including, size, delivery route, and antibody targeting, both in vitro in breast cancer cell lines and in vivo with the same cells in syngeneic or xenogeneic grafts in mice.
Aim 2 exploits our preliminary data suggesting a reduction of interstitial tumor pressure improves nanoparticle delivery and biodistribution in tumors and investigates the in vivo impact of such reduction. mNP-AMF can among other potential effects generate local hyperthermia and mild hyperthermia is well documented in vitro, in animals and patients to significantly increase the effectiveness of conventional cancer treatment modalities such as radiation and chemotherapy.
Aim 3 investigates the synergy between mNP-AMF and radiation or chemotherapy.
Aim 4 is designed to directly support the planned clinical trials of mNP-AMF therapy for breast cancer at Dartmouth. Our preliminary experiments have allowed us to define appropriate parameters for mNP-AMF treatment for mice. While extremely useful, this information will not translate directly to human patients.
Aim 4 will use human breast and tumor phantoms and an in vivo porcine breast model (we have the appropriate generator and coils) to determine optimal mNP and AMF delivery techniques for the human breast cancer patient. Project 3 will interact with all other projects and cores. The nanoparticle core will supply particles, as will project 1. Projects 1 and 2 will use the models generated by project 3. Project 4 will use the AMF equipment housed in project 3 and interact intellectually with project 3 since each both are using mNP-AMF for therapy. Pathology, Toxicology and Biodistribution core will analyze mNP biodistribution and the Bioinformatics, Statistics and Data Analysis core will perform data analysis and support experimental design.

Public Health Relevance

Project 3 is focused on the preclinical studies needed to support the use of mNP-AMF technology as a therapy against breast cancer. These breast cancer model studies include how to optimize particle characteristics and delivery, how best to combine mNP-AMF with chemotherapy and radiation and the crucial studies in breast phantoms and large animals that will for the first time investigate parameters for using mNPP-AMF in humans.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54CA151662-03
Application #
8379358
Study Section
Special Emphasis Panel (ZCA1-GRB-S)
Project Start
Project End
Budget Start
2012-08-01
Budget End
2013-07-31
Support Year
3
Fiscal Year
2012
Total Cost
$337,926
Indirect Cost
$83,028
Name
Dartmouth College
Department
Type
DUNS #
041027822
City
Hanover
State
NH
Country
United States
Zip Code
03755
Reeves, Daniel B; Shi, Yipeng; Weaver, John B (2016) Generalized Scaling and the Master Variable for Brownian Magnetic Nanoparticle Dynamics. PLoS One 11:e0150856
Lizotte, P H; Wen, A M; Sheen, M R et al. (2016) In situ vaccination with cowpea mosaic virus nanoparticles suppresses metastatic cancer. Nat Nanotechnol 11:295-303
Stigliano, Robert V; Shubitidze, Fridon; Petryk, James D et al. (2016) Mitigation of eddy current heating during magnetic nanoparticle hyperthermia therapy. Int J Hyperthermia 32:735-48
Tesone, Amelia J; Rutkowski, Melanie R; Brencicova, Eva et al. (2016) Satb1 Overexpression Drives Tumor-Promoting Activities in Cancer-Associated Dendritic Cells. Cell Rep 14:1774-86
Sheen, M R; Marotti, J D; Allegrezza, M J et al. (2016) Constitutively activated PI3K accelerates tumor initiation and modifies histopathology of breast cancer. Oncogenesis 5:e267
Kekalo, Katsiaryna; Shubitidze, Fridon; Meyers, Robert et al. (2016) Magnetic Heating of Fe-Co Ferrites: Experiments and Modeling. Nano Life 6:
Nemani, Krishnamurthy V; Ennis, Riley C; Griswold, Karl E et al. (2015) Magnetic nanoparticle hyperthermia induced cytosine deaminase expression in microencapsulated E. coli for enzyme-prodrug therapy. J Biotechnol 203:32-40
Rutkowski, Melanie R; Stephen, Tom L; Svoronos, Nikolaos et al. (2015) Microbially driven TLR5-dependent signaling governs distal malignant progression through tumor-promoting inflammation. Cancer Cell 27:27-40
Shubitidze, Fridon; Kekalo, Katsiaryna; Stigliano, Robert et al. (2015) Magnetic nanoparticles with high specific absorption rate of electromagnetic energy at low field strength for hyperthermia therapy. J Appl Phys 117:094302
Reeves, Daniel B; Weaver, John B (2015) Combined Néel and Brown rotational Langevin dynamics in magnetic particle imaging, sensing, and therapy. Appl Phys Lett 107:223106

Showing the most recent 10 out of 95 publications