Ovarian cancer remains the most deadly malignancy. Targeting angiogenesis is a particulariy attractive strategy because of the presumed genetic stability of endothelial cells. This is best illustrated by recent successes of anti-angiogenic therapy (e.g., bevacizumab) in patients with solid tumors. However, despite initial responses, most patients eventually develop tumor progression resulting in their demise. Therefore, new anti-angiogenesis therapeutic strategies are needed. The overall goal of this project is to develop novel nanoparticle-based strategies to target the tumor vasculature specifically. We propose to utilize two types of biocompatible therapeutic nanoparticles (chitosan and gold nanoshell nanoparticles) for the delivery of therapeutic payloads (e.g., siRNA) or near-infrared (NIR) laser mediated thermal ablation. These platforms are supported by Integrated approaches for selective delivery into the tumor vasculature using either rationally designed multi-stage carriers or surface ligands (thioaptamers) selected from screening libraries based on selective binding. Using genomic approaches, we have identified novel candidate target genes in ovarian cancer vasculature that will be targeted using RNAi approaches (Aim 1) because many are difficult to inhibit with small molecules or monoclonal antibodies. In our preliminary findings, we have identified thiophosphate oligonucleotide aptamers (thio-aptamers) that selectively bind to tumor, but not to normal endothelial cells based on counter selection strategies using freshly isolated endothelial cells from human ovarian cancer or normal ovaries.
In Aim 1, we will develop thioaptamertargeted nanoparticles for selective delivery of therapeutic siRNA. On the basis of our preliminary findings regarding the critical role of size and shape in vascular localization of nanoparticles, we will pursue rational design of nanoparticles for targeting the tumor vasculature in Aim 2. Gold-based nanoshells offer unique opportunities for thermal ablation using NIR light.
In Aim 3, we will develop and characterize novel approaches for thermal ablation of ovarian cancer vasculature using targeted gold nanoshells. All three aims are complementary to each other and findings of this study should allow the design and translation of new therapeutic approaches for women with ovarian cancer.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Specialized Center--Cooperative Agreements (U54)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-GRB-S)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Texas Health Science Center Houston
United States
Zip Code
Wagner, Michael J; Mitra, Rahul; McArthur, Mark J et al. (2017) Preclinical Mammalian Safety Studies of EPHARNA (DOPC Nanoliposomal EphA2-Targeted siRNA). Mol Cancer Ther 16:1114-1123
Samuelsson, Emma; Shen, Haifa; Blanco, Elvin et al. (2017) Contribution of Kupffer cells to liposome accumulation in the liver. Colloids Surf B Biointerfaces 158:356-362
Zhou, Jinhua; Alfraidi, Albandri; Zhang, Shu et al. (2017) A Novel Compound ARN-3236 Inhibits Salt-Inducible Kinase 2 and Sensitizes Ovarian Cancer Cell Lines and Xenografts to Paclitaxel. Clin Cancer Res 23:1945-1954
Venuta, Alessandro; Wolfram, Joy; Shen, Haifa et al. (2017) Post-nano strategies for drug delivery: Multistage porous silicon microvectors. J Mater Chem B 5:207-219
Wolfram, Joy; Nizzero, Sara; Liu, Haoran et al. (2017) A chloroquine-induced macrophage-preconditioning strategy for improved nanodelivery. Sci Rep 7:13738
Pi, Fengmei; Zhang, Hui; Li, Hui et al. (2017) RNA nanoparticles harboring annexin A2 aptamer can target ovarian cancer for tumor-specific doxorubicin delivery. Nanomedicine 13:1183-1193
Zacharias, Niki Marie; McCullough, Christopher; Shanmugavelandy, Sriram et al. (2017) Metabolic Differences in Glutamine Utilization Lead to Metabolic Vulnerabilities in Prostate Cancer. Sci Rep 7:16159
Borsoi, Carlotta; Leonard, Fransisca; Lee, Yeonju et al. (2017) Gemcitabine enhances the transport of nanovector-albumin-bound paclitaxel in gemcitabine-resistant pancreatic ductal adenocarcinoma. Cancer Lett 403:296-304
Van Roosbroeck, Katrien; Fanini, Francesca; Setoyama, Tetsuro et al. (2017) Combining Anti-Mir-155 with Chemotherapy for the Treatment of Lung Cancers. Clin Cancer Res 23:2891-2904
Kanlikilicer, Pinar; Ozpolat, Bulent; Aslan, Burcu et al. (2017) Therapeutic Targeting of AXL Receptor Tyrosine Kinase Inhibits Tumor Growth and Intraperitoneal Metastasis in Ovarian Cancer Models. Mol Ther Nucleic Acids 9:251-262

Showing the most recent 10 out of 325 publications