The most studied epigenetic abnormality in cancer is gene silencing associated with DNA hypermethylation. Recent studies demonstrate that gene inactivation by promoter hypermethylation can occur at early stages of cancer progression, perhaps even before mutations can be detected. Using DNA methylation as a cancer biomarker shows great promise for early diagnosis, assessments in high risk individuals, and post-therapy monitoring. While a noninvasive test with bodily fluids to detect cancer is seen as a holy grail by clinicians, the ability to detect specific DNA methylation changes in bodily fluids, including blood, sputum or stool represents a greater challenge, due to the small amounts of DNA available in these samples and the limited tumor content of such samples. Therefore, a clinically useful technology that allows for detection of DNA methylation in bodily fluids will have a substantial impact in both cancer diagnosis and management. We propose to develop a new methylation detection platform which integrates improved methods for each of the critical processes involved: DNA isolation, bisulfite treatment, and detection of methylation. All steps will ultimately be integrated and performed on a microfiuidic chip, utilizing superparamagnetic particles as a common carrier for fluidic and molecular manipulations and the quantum dots-mediated fluorescence resonance energy transfer technology (QD-FRET) for biosensing. This approach will facilitate highly efficient sample preparation and sensitive detection of DNA methylation in bodily fluids. In addition, the proposed technology can perform integrated and automatic analysis, minimizing manual labor and time while providing more reproducible results and being useful for a large scale screening. The potential use in pre-cUnical applications will be determined by testing bodily samples from patients with early stage cancers and controls, including serum/plasma, sputum and stool. In addition, the detection of cancer specific methylation in the blood/plasma will be used to monitor therapeutic response in Projects 2, 3 and 4, facihtating development prior to examination of cancer patients.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54CA151838-04
Application #
8545548
Study Section
Special Emphasis Panel (ZCA1-GRB-S)
Project Start
2010-08-25
Project End
2015-07-31
Budget Start
2013-09-13
Budget End
2014-07-31
Support Year
4
Fiscal Year
2013
Total Cost
$67,450
Indirect Cost
$105,001
Name
Johns Hopkins University
Department
Type
DUNS #
001910777
City
Baltimore
State
MD
Country
United States
Zip Code
21218
Stark, Alejandro; Shin, Dong Jin; Pisanic 2nd, Thomas et al. (2016) A parallelized microfluidic DNA bisulfite conversion module for streamlined methylation analysis. Biomed Microdevices 18:5
Attaluri, Anilchandra; Seshadri, Madhav; Mirpour, Sahar et al. (2016) Image-guided thermal therapy with a dual-contrast magnetic nanoparticle formulation: A feasibility study. Int J Hyperthermia 32:543-57
Williford, John-Michael; Archang, Maani M; Minn, Il et al. (2016) Critical Length of PEG Grafts on lPEI/DNA Nanoparticles for Efficient in Vivo Delivery. ACS Biomater Sci Eng 2:567-578
Mukherjee, Amarnath; Kumar, Binod; Hatano, Koji et al. (2016) Development and Application of a Novel Model System to Study "Active" and "Passive" Tumor Targeting. Mol Cancer Ther 15:2541-2550
Yan, Lesan; Li, Xingde (2016) Biodegradable Stimuli-Responsive Polymeric Micelles for Treatment of Malignancy. Curr Pharm Biotechnol 17:227-36
Lesniak, Wojciech G; Oskolkov, Nikita; Song, Xiaolei et al. (2016) Salicylic Acid Conjugated Dendrimers Are a Tunable, High Performance CEST MRI NanoPlatform. Nano Lett 16:2248-53
Huang, Yu-Ja; Hoffmann, Gwendolyn; Wheeler, Benjamin et al. (2016) Cellular microenvironment modulates the galvanotaxis of brain tumor initiating cells. Sci Rep 6:21583
Dawidczyk, Charlene M; Russell, Luisa M; Searson, Peter C (2015) Recommendations for Benchmarking Preclinical Studies of Nanomedicines. Cancer Res 75:4016-20
Behnam Azad, Babak; Banerjee, Sangeeta R; Pullambhatla, Mrudula et al. (2015) Evaluation of a PSMA-targeted BNF nanoparticle construct. Nanoscale 7:4432-42
Song, Xiaolei; Airan, Raag D; Arifin, Dian R et al. (2015) Label-free in vivo molecular imaging of underglycosylated mucin-1 expression in tumour cells. Nat Commun 6:6719

Showing the most recent 10 out of 109 publications