This U54 application submitted in response to RFA CA10-021 Tumor Microenvironment (TMEN) is from the University of Nebraska Medical Center. The overall goal of this application is to define the role of interactions between pancreatic tumor cells and the tumor microenvironment during the development and progression of pancreatic cancer. A hallmark of pancreatic cancer is an extreme fibrotic response, and it is our collective hypothesis that fibrosis promotes signaling to the tumor cells, which promotes tumor growth, invasion and metastasis. Specifically, we will investigate interactions, regulation and contributio of secreted and cell surface molecules expressed by stromal cells, premalignant epithelial cells, and malignant cells. This project brings together investigators with experience in the biology of pancreatic cancer. The Pancreatic Tumor Microenvironment Network (TMEN) will include 4 research projects and 3 shared resources. Project 1: Interplay of tumor microenvironment and MUC4 in pancreatic cancer. Surinder K. Batra, Ph. D. Project 2: Lymphangiogeneis and metastasis during pancreatic cancer. Michael A. Hollingsworth, Ph. D Project 3: Role of N-cadherin in pancreatic tumor microenvironment. Keith Johnson, Ph.D. Project 4: CXCR2-dependent pancreatic cancer progression and metastasis. Rakesh K. Singh. Shared resource 1: Administrative Core;Shared resource 2: Rapid Autopsy Program (RAP) Core Shared resource 3: Genetically engineered Model (GEM) Core, Kay Wagner, Ph.D. The four research projects will investigate the role of microenvironment in the early stages of tumor development (Project 1), tumor progression (Projects 3 and 4) and angiogenesis and metastasis (Project 2). Together the group of investigators will exploit the powerful resources comprising of clinical samples, in vitro cell models and genetically engineered animal models of spontaneous tumorigenesis that exist at UNMC, to unravel the complex interplay between the components of tumor microenvironment and tumor cells in pancreatic cancer initiation and progression. With the expertise of the involved investigators in TME, we seek to improve our understanding of the underappreciated role of tumor microenvironment in pancreatic cancer and establish potential therapeutic relevance.

Public Health Relevance

There is increasing realization that microenvironment plays a critical role in pancreatic cancer (PC) progression. It is thus essential to understand how this nexus between the microenvironment and tumor cells operates during both early and late stages of tumorigenesis? The overall objective is to understand this complex interplay between the components of TME with tumor cells using cell models, clinical samples and genetically engineered animal models in PC.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Specialized Center--Cooperative Agreements (U54)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-SRLB-3 (O1))
Program Officer
Mohla, Suresh
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Nebraska Medical Center
Schools of Medicine
United States
Zip Code
Karmakar, Saswati; Seshacharyulu, Parthasarathy; Lakshmanan, Imayavaramban et al. (2017) hPaf1/PD2 interacts with OCT3/4 to promote self-renewal of ovarian cancer stem cells. Oncotarget 8:14806-14820
Shukla, Surendra K; Purohit, Vinee; Mehla, Kamiya et al. (2017) MUC1 and HIF-1alpha Signaling Crosstalk Induces Anabolic Glucose Metabolism to Impart Gemcitabine Resistance to Pancreatic Cancer. Cancer Cell 32:71-87.e7
Krishn, Shiv Ram; Kaur, Sukhwinder; Sheinin, Yuri M et al. (2017) Mucins and associated O-glycans based immunoprofile for stratification of colorectal polyps: clinical implication for improved colon surveillance. Oncotarget 8:7025-7038
Lakshmanan, Imayavaramban; Salfity, Shereen; Seshacharyulu, Parthasarathy et al. (2017) MUC16 Regulates TSPYL5 for Lung Cancer Cell Growth and Chemoresistance by Suppressing p53. Clin Cancer Res 23:3906-3917
Gebregiworgis, Teklab; Purohit, Vinee; Shukla, Surendra K et al. (2017) Glucose Limitation Alters Glutamine Metabolism in MUC1-Overexpressing Pancreatic Cancer Cells. J Proteome Res 16:3536-3546
Kaur, Sukhwinder; Smith, Lynette M; Patel, Asish et al. (2017) A Combination of MUC5AC and CA19-9 Improves the Diagnosis of Pancreatic Cancer: A Multicenter Study. Am J Gastroenterol 112:172-183
Joshi, Suhasini; Cruz, Eric; Rachagani, Satyanarayana et al. (2016) Bile acids-mediated overexpression of MUC4 via FAK-dependent c-Jun activation in pancreatic cancer. Mol Oncol 10:1063-77
Muniyan, Sakthivel; Haridas, Dhanya; Chugh, Seema et al. (2016) MUC16 contributes to the metastasis of pancreatic ductal adenocarcinoma through focal adhesion mediated signaling mechanism. Genes Cancer 7:110-124
Fink, Darci M; Steele, Maria M; Hollingsworth, Michael A (2016) The lymphatic system and pancreatic cancer. Cancer Lett 381:217-36
Huang, Huocong; Svoboda, Robert A; Lazenby, Audrey J et al. (2016) Up-regulation of N-cadherin by Collagen I-activated Discoidin Domain Receptor 1 in Pancreatic Cancer Requires the Adaptor Molecule Shc1. J Biol Chem 291:23208-23223

Showing the most recent 10 out of 97 publications