Although, the biological and medical value of identifying the genes and variants responsible for Mendelian disorders is extraordinarily high, the vast majority of these remain unexplained at the molecular level. To this end, we will create a partnership between two of the oldest and most accomplished human genetics programs in the country, those at Baylor College of Medicine (BCM) and Johns Hopkins University School of Medicine (JHUSOM), to form the Baylor-Hopkins Center for Mendelian Genomics (BHCMG). In doing so, we will take advantage of our complete access to OMIM and of the synergies afforded by combining our expertise in clinical genetics, genomic technologies, genetic analysis and understanding the biological basis of genetic disease. We will meet the challenge of finding and recruiting samples representing these rare disorders by creating and utilizing a worldwide network of colleagues and former trainees to identify and recruit thousands of patients and families with unexplained Mendelian phenotypes or with undiagnosed disease that segregates in their families as Mendelian traits. We already have >2,000 DNA samples in hand at our two institutions and have identified >12,000 DNA samples in our network of 17 collaborators around the world. Moreover, we have developed strategies to utilize OMIM (>10, 000 unique hits/day) to flag unexplained phenotypes and recruit samples. We will further organize our efforts by building a sample and disease-tracking database that is integrated with and accessible through OMIM as well as through a BHCMG web site and have assembled a committee of experts to assist with the inevitable ELSI issues. We will build on our existing high throughput genotyping and sequencing pipelines to develop an integrated laboratory effort and we will use a committee of experts from both institutions plus outside experts to analyze the data and develop new software tools to advance the field. Finally, to disseminate the phenotypic and molecular information we will follow an aggressive plan of data dissemination using OMIM and other web-based resources as well as organizing an annual Mendelian genetics meeting open to all.

Public Health Relevance

We will form a partnership between two distinguished programs in human genetics. The Baylor - Hopkins Center for Mendelian Genomics or BHCMG, to recruit samples from patients with Mendelian disorders. We will use state of the art genetics and genomics technology and analyses to identify the genes and variants responsible for these disorders and disseminate our results to the biomedical community

Agency
National Institute of Health (NIH)
Institute
National Human Genome Research Institute (NHGRI)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
5U54HG006542-03
Application #
8601122
Study Section
Special Emphasis Panel (ZHG1)
Program Officer
Wang, Lu
Project Start
2011-12-05
Project End
2015-11-30
Budget Start
2013-12-01
Budget End
2014-11-30
Support Year
3
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Johns Hopkins University
Department
Type
Schools of Medicine
DUNS #
City
Baltimore
State
MD
Country
United States
Zip Code
21218
Alhariri, Ahmad; Hamilton, Katherine; Oza, Vikash et al. (2017) Clinical report: A patient with a late diagnosis of cerebrotendinous xanthomatosis and a response to treatment. Am J Med Genet A 173:2275-2279
Kariminejad, Ariana; Ajeawung, Norbert Fonya; Bozorgmehr, Bita et al. (2017) Kaufman oculo-cerebro-facial syndrome in a child with small and absent terminal phalanges and absent nails. J Hum Genet 62:465-471
Posey, Jennifer E; Harel, Tamar; Liu, Pengfei et al. (2017) Resolution of Disease Phenotypes Resulting from Multilocus Genomic Variation. N Engl J Med 376:21-31
Halim, Danny; Brosens, Erwin; Muller, Fran├žoise et al. (2017) Loss-of-Function Variants in MYLK Cause Recessive Megacystis Microcolon Intestinal Hypoperistalsis Syndrome. Am J Hum Genet 101:123-129
Mace, Emily M; Bigley, Venetia; Gunesch, Justin T et al. (2017) Biallelic mutations in IRF8 impair human NK cell maturation and function. J Clin Invest 127:306-320
Harms, Frederike Leonie; Girisha, Katta M; Hardigan, Andrew A et al. (2017) Mutations in EBF3 Disturb Transcriptional Profiles and Cause Intellectual Disability, Ataxia, and Facial Dysmorphism. Am J Hum Genet 100:117-127
Sobreira, Nara; Brucato, Martha; Zhang, Li et al. (2017) Patients with a Kabuki syndrome phenotype demonstrate DNA methylation abnormalities. Eur J Hum Genet 25:1335-1344
Miszalski-Jamka, Karol; Jefferies, John L; Mazur, Wojciech et al. (2017) Novel Genetic Triggers and Genotype-Phenotype Correlations in Patients With Left Ventricular Noncompaction. Circ Cardiovasc Genet 10:
Yoon, Wan Hee; Sandoval, Hector; Nagarkar-Jaiswal, Sonal et al. (2017) Loss of Nardilysin, a Mitochondrial Co-chaperone for ?-Ketoglutarate Dehydrogenase, Promotes mTORC1 Activation and Neurodegeneration. Neuron 93:115-131
Liu, Pengfei; Yuan, Bo; Carvalho, Claudia M B et al. (2017) An Organismal CNV Mutator Phenotype Restricted to Early Human Development. Cell 168:830-842.e7

Showing the most recent 10 out of 192 publications