Although, the biological and medical value of identifying the genes and variants responsible for Mendelian disorders is extraordinarily high, the vast majority of these remain unexplained at the molecular level. To this end, we will create a partnership between two of the oldest and most accomplished human genetics programs in the country, those at Baylor College of Medicine (BCM) and Johns Hopkins University School of Medicine (JHUSOM), to form the Baylor-Hopkins Center for Mendelian Genomics (BHCMG). In doing so, we will take advantage of our complete access to OMIM and of the synergies afforded by combining our expertise in clinical genetics, genomic technologies, genetic analysis and understanding the biological basis of genetic disease. We will meet the challenge of finding and recruiting samples representing these rare disorders by creating and utilizing a worldwide network of colleagues and former trainees to identify and recruit thousands of patients and families with unexplained Mendelian phenotypes or with undiagnosed disease that segregates in their families as Mendelian traits. We already have >2,000 DNA samples in hand at our two institutions and have identified >12,000 DNA samples in our network of 17 collaborators around the world. Moreover, we have developed strategies to utilize OMIM (>10, 000 unique hits/day) to flag unexplained phenotypes and recruit samples. We will further organize our efforts by building a sample and disease-tracking database that is integrated with and accessible through OMIM as well as through a BHCMG web site and have assembled a committee of experts to assist with the inevitable ELSI issues. We will build on our existing high throughput genotyping and sequencing pipelines to develop an integrated laboratory effort and we will use a committee of experts from both institutions plus outside experts to analyze the data and develop new software tools to advance the field. Finally, to disseminate the phenotypic and molecular information we will follow an aggressive plan of data dissemination using OMIM and other web-based resources as well as organizing an annual Mendelian genetics meeting open to all.

Public Health Relevance

We will form a partnership between two distinguished programs in human genetics. The Baylor - Hopkins Center for Mendelian Genomics or BHCMG, to recruit samples from patients with Mendelian disorders. We will use state of the art genetics and genomics technology and analyses to identify the genes and variants responsible for these disorders and disseminate our results to the biomedical community

Agency
National Institute of Health (NIH)
Institute
National Human Genome Research Institute (NHGRI)
Type
Specialized Center--Cooperative Agreements (U54)
Project #
1U54HG006542-01
Application #
8237388
Study Section
Special Emphasis Panel (ZHG1-HGR-P (O2))
Program Officer
Wang, Lu
Project Start
2011-12-05
Project End
2015-11-30
Budget Start
2011-12-05
Budget End
2012-11-30
Support Year
1
Fiscal Year
2012
Total Cost
$4,000,000
Indirect Cost
$529,269
Name
Johns Hopkins University
Department
Type
Schools of Medicine
DUNS #
001910777
City
Baltimore
State
MD
Country
United States
Zip Code
21218
Poli, M Cecilia; Ebstein, Frédéric; Nicholas, Sarah K et al. (2018) Heterozygous Truncating Variants in POMP Escape Nonsense-Mediated Decay and Cause a Unique Immune Dysregulatory Syndrome. Am J Hum Genet 102:1126-1142
Carvalho, Daniel R; Medeiros, João Eugenio G; Ribeiro, Daniela Sebestyan M et al. (2018) Additional features of Gillespie syndrome in two Brazilian siblings with a novel ITPR1 homozygous pathogenic variant. Eur J Med Genet 61:134-138
Lu, Jacqueline G; Bishop, Juliet; Cheyette, Sarah et al. (2018) A novel PRRT2 pathogenic variant in a family with paroxysmal kinesigenic dyskinesia and benign familial infantile seizures. Cold Spring Harb Mol Case Stud 4:
Hwang, Jessica L; Park, Soo-Young; Ye, Honggang et al. (2018) FOXP3 mutations causing early-onset insulin-requiring diabetes but without other features of immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome. Pediatr Diabetes 19:388-392
Ruiz-García, Raquel; Vargas-Hernández, Alexander; Chinn, Ivan K et al. (2018) Mutations in PI3K110? cause impaired natural killer cell function partially rescued by rapamycin treatment. J Allergy Clin Immunol 142:605-617.e7
Sisk, Robert A; Hufnagel, Robert B; Laham, Ailee et al. (2018) Peripheral Cone Dystrophy: Expanded Clinical Spectrum, Multimodal and Ultrawide-Field Imaging, and Genomic Analysis. J Ophthalmol 2018:2984934
Jiang, Yunyun; Wangler, Michael F; McGuire, Amy L et al. (2018) The phenotypic spectrum of Xia-Gibbs syndrome. Am J Med Genet A 176:1315-1326
Zollo, Massimo; Ahmed, Mustafa; Ferrucci, Veronica et al. (2017) PRUNE is crucial for normal brain development and mutated in microcephaly with neurodevelopmental impairment. Brain 140:940-952
Bekheirnia, Mir Reza; Bekheirnia, Nasim; Bainbridge, Matthew N et al. (2017) Whole-exome sequencing in the molecular diagnosis of individuals with congenital anomalies of the kidney and urinary tract and identification of a new causative gene. Genet Med 19:412-420
Di Gioia, Silvio Alessandro; Connors, Samantha; Matsunami, Norisada et al. (2017) A defect in myoblast fusion underlies Carey-Fineman-Ziter syndrome. Nat Commun 8:16077

Showing the most recent 10 out of 204 publications