The Computational Biology Support Component (Leader, Thomas Kepler) will be organized into two teams: one team at Duke under Thomas Kepler, and the other at Los Alamos led by Bette Korber and Alan Perelson. Independently and jointly, they will work to surmount the two roadblocks: HlV-1 diversity and the inability to induce broad neutralizing antibodies (BnAbs) to HIV-1 envelope. Both sites will be involved in and collaborate on statistical analyses and immunogen design, but each will have its own primary focus. The Duke team will focus on the analysis and modeling of affinity maturation toward protective antibody phenotypes, including the inference of clonal histories back to the unmutated common ancestor and integrated analysis of structural, phenotypic, and genetic antibody data. The Los Alamos team will focus on polyvalent and mosaic immunogen design to overcome HIV diversity and assist in modeling affinity maturation and antibody repertoire. Together, the teams will statistically evaluate all results obtained from testing of the various designs as well as perform co-evolutionary analyses of BnAbs and transmitted/founder viral sequences together with the Viral Biology SRSC. Both teams will contribute to immunogen design and the development of different approaches.
Specific Aims Aim 1. Statistical analysis of HIV broadly neutralizing antibodies (BnAb) and vaccine-induced antibody and virus evolution.
Aim 2. Computational design of vaccine antigens for the induction and maturation of protective antibody responses.

Public Health Relevance

The development of a vaccine against HIV infection remains a problem of great public concern. Researchers have learned a great deal recently about how the immune system and HIV-1 interact;sophisticated new approaches to vaccine design based on these findings are being tested. These methods call for correspondingly sophisticated computational methods, to be provided by the computational biology group.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project with Complex Structure Cooperative Agreement (UM1)
Project #
5UM1AI100645-02
Application #
8508880
Study Section
Special Emphasis Panel (ZAI1-JBS-A)
Project Start
Project End
Budget Start
2013-07-01
Budget End
2014-06-30
Support Year
2
Fiscal Year
2013
Total Cost
$1,261,104
Indirect Cost
Name
Duke University
Department
Type
DUNS #
044387793
City
Durham
State
NC
Country
United States
Zip Code
27705
Finney, Joel; Kelsoe, Garnett (2018) Poly- and autoreactivity of HIV-1 bNAbs: implications for vaccine design. Retrovirology 15:53
Bradley, Todd; Peppa, Dimitra; Pedroza-Pacheco, Isabela et al. (2018) RAB11FIP5 Expression and Altered Natural Killer Cell Function Are Associated with Induction of HIV Broadly Neutralizing Antibody Responses. Cell 175:387-399.e17
Richard, Jonathan; Prévost, Jérémie; Baxter, Amy E et al. (2018) Uninfected Bystander Cells Impact the Measurement of HIV-Specific Antibody-Dependent Cellular Cytotoxicity Responses. MBio 9:
Pardi, Norbert; Hogan, Michael J; Porter, Frederick W et al. (2018) mRNA vaccines - a new era in vaccinology. Nat Rev Drug Discov 17:261-279
Bowder, Dane; Hollingsead, Haley; Durst, Kate et al. (2018) Contribution of the gp120 V3 loop to envelope glycoprotein trimer stability in primate immunodeficiency viruses. Virology 521:158-168
Madani, Navid; Princiotto, Amy M; Mach, Linh et al. (2018) A CD4-mimetic compound enhances vaccine efficacy against stringent immunodeficiency virus challenge. Nat Commun 9:2363
Winawer, Melodie R; Griffin, Nicole G; Samanamud, Jorge et al. (2018) Somatic SLC35A2 variants in the brain are associated with intractable neocortical epilepsy. Ann Neurol 83:1133-1146
Dong, Yuanchen; Chen, Shuobing; Zhang, Shijian et al. (2018) Folding DNA into a Lipid-Conjugated Nanobarrel for Controlled Reconstitution of Membrane Proteins. Angew Chem Int Ed Engl 57:2072-2076
Prévost, Jérémie; Richard, Jonathan; Medjahed, Halima et al. (2018) Incomplete Downregulation of CD4 Expression Affects HIV-1 Env Conformation and Antibody-Dependent Cellular Cytotoxicity Responses. J Virol 92:
Prévost, Jérémie; Richard, Jonathan; Ding, Shilei et al. (2018) Envelope glycoproteins sampling states 2/3 are susceptible to ADCC by sera from HIV-1-infected individuals. Virology 515:38-45

Showing the most recent 10 out of 261 publications