DNA has been obtained from approximately 20 major malformations for current and future investigations. We have recently expanded our investigations to include searching for copy number variants in rare defects. New York has an exceptionally valuable research resource in having approximately 250,000 births per year from which to identify children with rare defects. In addition to classic candidate gene approaches, cases have been selected for copy number variant studies. Samples have been analyzed by large scale copy number variant array testing. The first defects are now being analyzed for copy number variants. We have also collaborated with large groups doing genome wide association studies. Samples have been tested in cases and controls in collaboration providing subjects for confirmatory genotyping in several studies. Association between the C677T polymorphism of the methylene tetrahydrofolate reductase (MTHFR) gene and congenital heart disease (CHD) is contentious. We compared genotypes between CHD cases and controls and between mothers of CHD cases and controls. We placed our results in context by conducting meta-analyses of previously published studies. Among 5814 cases with primary genotype data and 10 056 controls, there was no evidence of association between MTHFR C677T genotype and CHD risk (odds ratio OR, 0.96 95% confidence interval, 0.87-1.07). A random-effects meta-analysis of all studies (involving 7697 cases and 13 125 controls) suggested the presence of association (OR, 1.25 95% confidence interval, 1.03-1.51;P=0.022) but with substantial heterogeneity among contributing studies (I(2)=64.4%) and evidence of publication bias. Meta-analysis of large studies only (defined by a variance of the log OR <0.05), which together contributed 83% of all cases, yielded no evidence of association (OR, 0.97 95% confidence interval, 0.91-1.03) without significant heterogeneity (I(2)=0). Moreover, meta-analysis of 1781 mothers of CHD cases (829 of whom were genotyped in this study) and 19 861 controls revealed no evidence of association between maternal C677T genotype and risk of CHD in offspring (OR, 1.13 95% confidence interval, 0.87-1.47). There was no significant association between MTHFR genotype and CHD risk in large studies from regions with different levels of dietary folate. The MTHFR C677T polymorphism, which directly influences plasma folate levels, is not associated with CHD risk. Publication biases appear to substantially contaminate the literature with regard to this genetic association. Sagittal craniosynostosis is the most common form of craniosynostosis, affecting approximately one in 5,000 newborns. We conducted, to our knowledge, the first genome-wide association study for nonsyndromic sagittal craniosynostosis (sNSC) using 130 non-Hispanic case-parent trios of European ancestry (NHW). We found robust associations in a 120-kb region downstream of BMP2 flanked by rs1884302 (P = 1.13 10(-14), odds ratio (OR) = 4.58) and rs6140226 (P = 3.40 10(-11), OR = 0.24) and within a 167-kb region of BBS9 between rs10262453 (P = 1.61 10(-10), OR = 0.19) and rs17724206 (P = 1.50 10(-8), OR = 0.22). We replicated the associations to both loci (rs1884302, P = 4.39 10(-31) and rs10262453, P = 3.50 10(-14)) in an independent NHW population of 172 unrelated probands with sNSC and 548 controls. Both BMP2 and BBS9 are genes with roles in skeletal development that warrant functional studies to further understand the etiology of sNSC. Anorectal atresia is a serious birth defect of largely unknown etiology but candidate genes have been identified in animal studies and human syndromes. Because alterations in the activity of these genes might lead to anorectal atresia, we selected 71 common variants predicted to be in transcription factor binding sites, CpG windows, splice sites, and miRNA target sites of 25 candidate genes, and tested for their association with anorectal atresia. The study population comprised 150 anorectal atresia cases and 623 control infants without major malformations. Variants predicted to affect transcription factor binding, splicing, and DNA methylation in WNT3A, PCSK5, TCF4, MKKS, GLI2, HOXD12, and BMP4 were associated with anorectal atresia based on a nominal P value <0.05. The GLI2 and BMP4 variants are reported to be moderately associated with gene expression changes (Spearman's rank correlation coefficients between -0.260 and 0.226). We did not find evidence for interaction between maternal pre-pregnancy obesity and variants in MKKS, a gene previously associated with obesity, on the risk of anorectal atresia. Our results for MKKS support previously suggested associations with anorectal malformations. Our findings suggest that more research is needed to determine whether altered GLI2 and BMP4 expression is important in anorectal atresia in humans. We conducted a population-based case-control study of single nucleotide polymorphisms (SNPs) in selected genes to find common variants that play a role in the etiology of limb deficiencies (LDs). Included in the study were 389 infants with LDs of unknown cause and 980 unaffected controls selected from all births in New York State (NYS) for the years 1998-2005. We used cases identified from the NYS Department of Health (DOH) Congenital Malformations Registry. Genotypes were obtained for 132 SNPs in genes involved in limb development (SHH, WNT7A, FGF4, FGF8, FGF10, TBX3, TBX5, SALL4, GREM1, GDF5, CTNNB1, EN1, CYP26A1, CYP26B1), angiogenesis (VEGFA, HIF1A, NOS3), and coagulation (F2, F5, MTHFR). Genotype call rates were >97% and SNPs were tested for departure from Hardy-Weinberg expectations by race/ethnic subgroups. For each SNP, odds ratios (OR)s and confidence intervals (CI)s were estimated and corrected for multiple comparisons for all LDs combined and for LD subtypes. Among non-Hispanic white infants, associations between FGF10 SNPs rs10805683 and rs13170645 and all LDs combined were statistically significant following correction for multiple testing (OR = 1.99;95% CI = 1.43-2.77;uncorrected P = 0.000043 for rs10805683 heterozygous genotype, and OR = 2.37;95% CI = 1.48-3.78;uncorrected P = 0.00032 for rs13170645 homozygous minor genotype). We also observed suggestive evidence for associations with SNPs in other genes including CYP26B1 and WNT7A. Animal studies have shown that FGF10 induces formation of the apical ectodermal ridge and is necessary for limb development. Our data suggest that common variants in FGF10 increase the risk for a wide range of non-syndromic limb deficiencies.

Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Zip Code
Mills, James L; Carter, Tonia C; Kay, Denise M et al. (2012) Folate and vitamin B12-related genes and risk for omphalocele. Hum Genet 131:739-46