New tools have enabled some of the most important advances in biology and medicine. We are at the threshold of an exciting new technological era in which deciphering deep levels of biological complexity will be routine. It will become possible to tackle biological and medical problems at what were once thought to be unimaginably large hierarchical scales, all the while observing and coordinating unprecedented levels of detail down to the molecular scale. And it is plausible that this will all be possible in real time - ultimately providing a continuous window into the evolving systems biology of organisms. This effort seeks to hasten the realization of this vision by leveraging recent advances nanosystems technology, an approach that coordinates vast numbers of individual nanodevices into a coherent whole with emergent functionality. The goal is development of biomedical tools that simultaneously enable new physical windows of observation, while amassing the requisite sophistication to address complex problems. Four initial projects are proposed from a realm of many: (i) fast typing of individual bacteria without culturing;(ii) obtaining physiological """"""""fingerprints"""""""" from exhaled breath;(iii) using cell mechanics and motility as a new tool in cancer research;and (iv) following the metabolism of individual cells to provide early screening of libraries of therapeutic drug candidates. Each example illustrates how existing nanosystems technology can be leveraged to realize new biomedical tools. Each harnesses the complementarity of scale between individual, unit nanosensors and their targets. Using the well-validated approach of state-of-the-art microelectronic foundry production, a realistic plan is outlined for producing robust tools in sufficient quantities to enable biological and medical research continuity. This research and production paradigm will enable groundbreaking, collaborative systems research in biomedical sciences though realization of tools ca

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
NIH Director’s Pioneer Award (NDPA) (DP1)
Project #
Application #
Study Section
Special Emphasis Panel (ZGM1-NDPA-B (01))
Program Officer
Gindhart, Joseph G
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
California Institute of Technology
Schools of Arts and Sciences
United States
Zip Code
Segev, Eran; Reimer, Jacob; Moreaux, Laurent C et al. (2017) Patterned photostimulation via visible-wavelength photonic probes for deep brain optogenetics. Neurophotonics 4:011002
Rios, Gustavo; Lubenov, Evgueniy V; Chi, Derrick et al. (2016) Nanofabricated Neural Probes for Dense 3-D Recordings of Brain Activity. Nano Lett 16:6857-6862
Sansa, Marc; Sage, Eric; Bullard, Elizabeth C et al. (2016) Frequency fluctuations in silicon nanoresonators. Nat Nanotechnol 11:552-8
Hanay, M Selim; Kelber, Scott I; O'Connell, Cathal D et al. (2015) Inertial imaging with nanomechanical systems. Nat Nanotechnol 10:339-44
Alivisatos, A Paul; Chun, Miyoung; Church, George M et al. (2015) A National Network of Neurotechnology Centers for the BRAIN Initiative. Neuron 88:445-8
McCaig, Heather C; Myers, Ed; Lewis, Nathan S et al. (2014) Vapor sensing characteristics of nanoelectromechanical chemical sensors functionalized using surface-initiated polymerization. Nano Lett 14:3728-32
Villanueva, L G; Kenig, E; Karabalin, R B et al. (2013) Surpassing fundamental limits of oscillators using nonlinear resonators. Phys Rev Lett 110:177208
Matheny, M H; Villanueva, L G; Karabalin, R B et al. (2013) Nonlinear mode-coupling in nanomechanical systems. Nano Lett 13:1622-6
Alivisatos, A Paul; Andrews, Anne M; Boyden, Edward S et al. (2013) Nanotools for neuroscience and brain activity mapping. ACS Nano 7:1850-66
Alivisatos, A Paul; Chun, Miyoung; Church, George M et al. (2013) Neuroscience. The brain activity map. Science 339:1284-5

Showing the most recent 10 out of 18 publications