Abstract: The ability to obtain neurons directly from the patients with neurological disorders will offer opportunities to study pathogenesis from the affected cells and develop novel therapeutic approaches. In hereditary neurological diseases, patient-specific neurons reprogrammed from non-neuronal cell types will harbor the same genetic mutation, thus offering valuable tools to study cell-autonomous pathology. For the disorders of somatic neurodegeneration, the isogenic, induced neurons may be used for cell replacement-based therapies. Most of current approaches towards deriving human individual-specific neurons have focused on transforming a differentiated cell type (for instance, dermal fibroblasts) to a pluripotent state and further differentiating them into neurons. This method requires forced expression of tumorigenic transcription factors that are highly expressed in embryonic stem cells. Moreover, differentiation of multipotent neural progenitors into specific subtypes of neurons is a difficult process to control. I have devised an alternative strategy of non-invasively obtaining neurons from adult human skin cells by converting their cell fate without going through pluripotent state (thus not requiring the expression of tumorigenic genes) and directly into post-mitotic neurons (direct reprogramming). I recently discovered that neuron-specific microRNAs (miR-9/9* and miR-124) could promote the switching of a non-neuronal cell fate into neurons when ectopically expressed with as few as one neural factor. The reprogramming efficiency was higher with more neural factors, and I devised a protocol in which miR-9/9* and -124 with neural factors, NeuroD2, ASCL1 and Myt1l generated neurons with cortical neuron-like characteristics. In this proposal, I will develop strategies to directly reprogram non-neuronal cells into various subtype-specific neurons. In developing tissue culture models of neurological diseases, it is important to obtain the type of neurons affected by the disease. Because the miR-9/9* and miR-124 are expressed pan-neuronally, I hypothesize that neuronal reprogramming can be customized for different subtypes of neurons by using transcription factors specific for the desired cell type in the background of miR-9/9*-124 expression. I will extend these studies to apply the direct reprogramming method in vivo from non-neuronal cells and hope to gain insights into possible restoration of the neuronal function lost in animal models of neuronal injury.

Public Health Relevance

The ability to non-invasively obtain neurons from human individuals with neurological disorders will offer novel directions towards disease modeling and cell replacement-based therapeutic approaches. Here, we prose to devise methods to directly reprogram non-neuronal cell fates into subtype-specific neurons and develop in vivo application of this method in animal models of neuronal injury.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
NIH Director’s New Innovator Awards (DP2)
Project #
4DP2NS083372-02
Application #
8825612
Study Section
Special Emphasis Panel (ZGM1)
Program Officer
Langhals, Nick B
Project Start
2012-09-30
Project End
2018-06-30
Budget Start
2017-07-01
Budget End
2018-06-30
Support Year
2
Fiscal Year
2017
Total Cost
Indirect Cost
Name
Washington University
Department
Other Basic Sciences
Type
Schools of Medicine
DUNS #
068552207
City
Saint Louis
State
MO
Country
United States
Zip Code
63130
Lu, Ya-Lin; Yoo, Andrew S (2018) Mechanistic Insights Into MicroRNA-Induced Neuronal Reprogramming of Human Adult Fibroblasts. Front Neurosci 12:522
Victor, Matheus B; Richner, Michelle; Olsen, Hannah E et al. (2018) Striatal neurons directly converted from Huntington's disease patient fibroblasts recapitulate age-associated disease phenotypes. Nat Neurosci 21:341-352
McCoy, Matthew J; Paul, Alexander J; Victor, Matheus B et al. (2018) LONGO: an R package for interactive gene length dependent analysis for neuronal identity. Bioinformatics 34:i422-i428
Lee, Seong Won; Oh, Young Mi; Lu, Ya-Lin et al. (2018) MicroRNAs Overcome Cell Fate Barrier by Reducing EZH2-Controlled REST Stability during Neuronal Conversion of Human Adult Fibroblasts. Dev Cell 46:73-84.e7
Abernathy, Daniel G; Kim, Woo Kyung; McCoy, Matthew J et al. (2017) MicroRNAs Induce a Permissive Chromatin Environment that Enables Neuronal Subtype-Specific Reprogramming of Adult Human Fibroblasts. Cell Stem Cell 21:332-348.e9
Huh, Christine J; Zhang, Bo; Victor, Matheus B et al. (2016) Maintenance of age in human neurons generated by microRNA-based neuronal conversion of fibroblasts. Elife 5:
Abernathy, Daniel G; Yoo, Andrew S (2015) MicroRNA-dependent genetic networks during neural development. Cell Tissue Res 359:179-85
Aouacheria, Abdel; Combet, Christophe; Tompa, Peter et al. (2015) Redefining the BH3 Death Domain as a 'Short Linear Motif'. Trends Biochem Sci 40:736-748
Victor, Matheus B; Richner, Michelle; Hermanstyne, Tracey O et al. (2014) Generation of human striatal neurons by microRNA-dependent direct conversion of fibroblasts. Neuron 84:311-23
Sun, Alfred X; Crabtree, Gerald R; Yoo, Andrew S (2013) MicroRNAs: regulators of neuronal fate. Curr Opin Cell Biol 25:215-21