Abstract: Tuberculosis kills 2 million people every year. The increasing prevalence of multiple drug- resistant (MDR) infections and the emergence of extensively/completely drug-resistant (XDR/CDR) tubercle bacilli are making currently chemotherapies less and less effective. The long-term goal of this proposal is to develop a novel therapy for tuberculosis based on our recent observation that anaerobic shock causes rapid and extensive cell lysis of Mycobacterium tuberculosis (e.g. >105 drop in bacterial survival within 5 min). Two general directions will be explored. One is treatment of lungs of infected hosts with anaerobic gas. Initially, rabbits infected with M. tuberculosis, including MDR and XDR clinical isolates, will be used to test the efficacy and safety of anaerobic gas mixtures optimized in vitro. Clinical trials, for which additional funding will be sought, will be designed based on our rabbit work. Our overall achievement of this line of work should provide a medical procedure that will achieve a positive to negative sputum bacilli conversion in hours, or perhaps even minutes, rather than the weeks required for traditional combination chemotherapy. The second direction focuses on the molecular mechanisms underlying anaerobic shock-mediated rapid cell lysis. Genetic, genomic, and biochemical approaches will be used to identify relevant genes and the encoded proteins involved in anaerobic shock-induced cell lysis using straight-forward turbidity and fluorescence assays. An in vivo cyclic peptide library will also be constructed and screened for autolysis- inducing activities similar to that conferred by anaerobic shock. Information gained from this second part of the work will be used to design high throughput screens for small-molecule activators of mycobacterial cell lysis. The success of this project will revolutionize tuberculosis therapy and generate a novel drug that would rapidly cure tuberculosis regardless of its drug- resistance profile (MDR or XDR) or physiological status (growing or dormant). Public Health Relevance: Tuberculosis infects a third of the world's population and kills 2 million people a year. The increasing problem of drug resistance may soon make all currently available treatment options ineffective. The present program seeks to develop a novel, rapid, and highly efficient treatment of tuberculosis upon induction of self-destructive autolysis of Mycobacterium tuberculosis.

Agency
National Institute of Health (NIH)
Institute
Office of The Director, National Institutes of Health (OD)
Type
NIH Director’s New Innovator Awards (DP2)
Project #
1DP2OD007423-01
Application #
7981664
Study Section
Special Emphasis Panel (ZGM1-NDIA-O (01))
Program Officer
Basavappa, Ravi
Project Start
2010-09-30
Project End
2015-06-30
Budget Start
2010-09-30
Budget End
2015-06-30
Support Year
1
Fiscal Year
2010
Total Cost
$2,340,000
Indirect Cost
Name
University of Medicine & Dentistry of NJ
Department
Public Health & Prev Medicine
Type
Schools of Medicine
DUNS #
623946217
City
Newark
State
NJ
Country
United States
Zip Code
07107
Luan, Gan; Hong, Yuzhi; Drlica, Karl et al. (2018) Suppression of Reactive Oxygen Species Accumulation Accounts for Paradoxical Bacterial Survival at High Quinolone Concentration. Antimicrob Agents Chemother 62:
Hong, Yuzhi; Li, Liping; Luan, Gan et al. (2017) Contribution of reactive oxygen species to thymineless death in Escherichia coli. Nat Microbiol 2:1667-1675
Mi, Hongfei; Wang, Dai; Xue, Yunxin et al. (2016) Dimethyl Sulfoxide Protects Escherichia coli from Rapid Antimicrobial-Mediated Killing. Antimicrob Agents Chemother 60:5054-8
Liu, Yuanli; Zhou, Jinan; Qu, Yilin et al. (2016) Resveratrol Antagonizes Antimicrobial Lethality and Stimulates Recovery of Bacterial Mutants. PLoS One 11:e0153023
Long, Quanxin; Du, Qinglin; Fu, Tiwei et al. (2015) Involvement of Holliday junction resolvase in fluoroquinolone-mediated killing of Mycobacterium smegmatis. Antimicrob Agents Chemother 59:1782-5
Zhao, Xilin; Hong, Yuzhi; Drlica, Karl (2015) Moving forward with reactive oxygen species involvement in antimicrobial lethality. J Antimicrob Chemother 70:639-42
Malik, Muhammad; Li, Liping; Zhao, Xilin et al. (2014) Lethal synergy involving bicyclomycin: an approach for reviving old antibiotics. J Antimicrob Chemother 69:3227-35
Li, Liping; Hong, Yuzhi; Luan, Gan et al. (2014) Ribosomal elongation factor 4 promotes cell death associated with lethal stress. MBio 5:e01708
Zhao, Xilin; Drlica, Karl (2014) Reactive oxygen species and the bacterial response to lethal stress. Curr Opin Microbiol 21:1-6
Dorsey-Oresto, Angella; Lu, Tao; Mosel, Michael et al. (2013) YihE kinase is a central regulator of programmed cell death in bacteria. Cell Rep 3:528-37

Showing the most recent 10 out of 12 publications