Abstract: Through infection of CD4 positive (CD4+) T lymphocytes, the Human Immunodeficiency Virus type 1 (HIV-1) has claimed twenty-five million lives since its discovery in 1983. Although it has been well established that HIV-1 initiates a T cell infection by binding to CD4 and chemokine coreceptors on the cell surface, the early events in HIV-1 infection of CD4+ T cells remain poorly understood. A variety of different techniques have been used over the years to study mechanisms of HIV-1 entry. However, one technical limitation that is inherent in all these methods is the inability to track the fate of a single HIV-1 virion from the very beginning of viral entry to chromosomal integration. In all these experiments, a population of viruses and cells were incubated and measured. Because each entry event can lead to proviral DNA integration with a finite probability, it is therefore difficult to establish a causative link between entry pathway and productive infection. The goal of this project is to develop a set of nanoscopic and novel technologies that we can harness to define the pathway and interactions by which HIV-1 infects CD4+ T cells. We are developing a technique based on optical tweezers that can manipulate a single HIV-1 virion, deliver it to CD4+ T cell and thus allows us to determine the fate of CD4+ T cell upon entry by a single virion. This technique will allow us to unambiguously define the molecular mechanisms of HIV-1 infection. Furthermore, we propose to measure directly the interactions between a single HIV-1 virion and receptors in the context of a live T cell. Collectively, these studies will contribute to a definitive and quantitative understanding of early events in HIV infection, which may help therapeutic development that is aimed to block HIV-1 entry to CD4+ T cells. The techniques developed herein can be useful for studying cellular uptake of not only viruses but other molecules, macromolecular assemblies and nanoparticles, and are applicable to a wide-range of ligand-receptor interactions on the cell surface. Public Health Relevance: The early events in HIV infection of CD4+ T cells are poorly understood. This proposal aims to develop a set of nanoscopic and other novel techniques to study HIV infection of CD4+ T cells in real time, one virion at a time. If successful, the results from this study will establish for the first time a causative link between HIV entry pathway and the productive infection of CD4+ T cells, which will help therapeutic development that is aimed to block HIV-1 entry to CD4+ T cells.

National Institute of Health (NIH)
Office of The Director, National Institutes of Health (OD)
NIH Director’s New Innovator Awards (DP2)
Project #
Application #
Study Section
Special Emphasis Panel (ZGM1-NDIA-S (01))
Program Officer
Basavappa, Ravi
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Michigan Ann Arbor
Schools of Pharmacy
Ann Arbor
United States
Zip Code
Hua, Boyang; Wang, Yanbo; Park, Seongjin et al. (2018) The Single-Molecule Centroid Localization Algorithm Improves the Accuracy of Fluorescence Binding Assays. Biochemistry 57:1572-1576
Kotnala, Abhay; Zheng, Yi; Fu, Jianping et al. (2017) Microfluidic-based high-throughput optical trapping of nanoparticles. Lab Chip 17:2125-2134
Chen, Zhilin; Cheng, Wei (2017) Reversible aggregation of HIV-1 Gag proteins mediated by nucleic acids. Biochem Biophys Res Commun 482:1437-1442
DeSantis, Michael C; Kim, Jin H; Song, Hanna et al. (2016) Quantitative Correlation between Infectivity and Gp120 Density on HIV-1 Virions Revealed by Optical Trapping Virometry. J Biol Chem 291:13088-97
Cheng, Wei (2016) The Density Code for the Development of a Vaccine? J Pharm Sci 105:3223-3232
Hou, Ximiao; DeSantis, Michael C; Tian, Chunjuan et al. (2016) Optical manipulation of a single human virus for study of viral-cell interactions. Proc SPIE Int Soc Opt Eng 9922:
DeSantis, Michael C; Cheng, Wei (2016) Label-free detection and manipulation of single biological nanoparticles. Wiley Interdiscip Rev Nanomed Nanobiotechnol 8:717-29
Pang, Yuanjie; Song, Hanna; Cheng, Wei (2016) Using optical trap to measure the refractive index of a single animal virus in culture fluid with high precision. Biomed Opt Express 7:1672-89
Cheng, Wei (2015) Mechanisms of HCV NS3 helicase monitored by optical tweezers. Methods Mol Biol 1259:229-55
Pang, Yuanjie; Song, Hanna; Kim, Jin H et al. (2014) Optical trapping of individual human immunodeficiency viruses in culture fluid reveals heterogeneity with single-molecule resolution. Nat Nanotechnol 9:624-30

Showing the most recent 10 out of 15 publications