Glucocorticoids (GCs) are steroid hormones that are frequently used in therapy for auto-immune and inflammatory diseases. These drugs can cause severe adverse effects such as bone loss and GC-induced osteoporosis (GIOP). The Insulin-like Growth Factor (IGF) system is a major target of GC inhibition in bone. We found that GCs inhibit expression of IGF binding protein-5 (IGFBP-5) which binds IGFs and stimulates osteoblast by IGF dependent and independent mechanisms. GC-induced inhibition of IGFPB-5 promoter activity was mediated by a composite response element that has binding sites for the transcription factor activator protein-2 (AP-2) and nuclear factor I (NFI). Our long term goal is to determine the mechanism by which IGFBP-5 is regulated in human osteoblasts. The focus of this grant is on the regulation of IGFBP-5 gene expression by NFI-B, a member of the NFI gene family. To define underlying mechanisms of IGFBP-5 gene regulation we will test two hypotheses: 1) NFI functions to regulate osteoblast proliferation and differentiation through activation of IGFBP-5 gene transcription and 2) Ligand dependent binding of GR to NFI mediates GC inhibition of IGFBP-5 expression. These hypotheses will be addressed with the following specific aims: 1) Characterize interactions between NFI-B, GR and AP-2 that are involved in regulation of IGFBP-5 transcription in osteoblasts and 2) Determine effects of NFI-B knockdown/ overexpression in IGFBP-5 expression, osteoblast proliferation and differentiation. We will investigate interactions between NFI-B, GR, AP-2 involved in the regulation of IGFBP-5 promoter activation using chromatin immunoprecipitation and electrophoretic mobility shift assays. Effects of NFI-B gene knockdown on IGFBP-5 expression will be assessed by transient transfection with synthetic siRNA oligos. Overexpression of NFI-B will be performed by transient transfection of NFI-B expression vector. Gene expression levels will be determined by quantitative Real Time PCR (qRT-PCR) for mRNA levels and Western blot for proteins. Osteoblast proliferation and differentiation will be performed by cell number based assays and by expression of osteoblast specific genes using qRT-PCR. Proposed work will not only provide new insights regarding the role of NFI-B transcription factor in osteoblast regulation, and GC-induced inhibition of IGFBP- 5 expression. Additionally, these studies will discover mechanisms that can be targeted for pharmacological prevention and treatment of osteoporosis and GIOP, conditions that significantly distress Americans.

Agency
National Institute of Health (NIH)
Institute
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Type
Predoctoral Individual National Research Service Award (F31)
Project #
5F31AR054722-03
Application #
7673734
Study Section
Special Emphasis Panel (ZRG1-DIG-H (29))
Program Officer
Sharrock, William J
Project Start
2007-08-01
Project End
2010-07-31
Budget Start
2009-08-01
Budget End
2010-07-31
Support Year
3
Fiscal Year
2009
Total Cost
$4,307
Indirect Cost
Name
Loma Linda University
Department
Other Basic Sciences
Type
Schools of Medicine
DUNS #
009656273
City
Loma Linda
State
CA
Country
United States
Zip Code
92350
PĂ©rez-Casellas, Laura A; Wang, Xiaoying; Howard, Kristy D et al. (2009) Nuclear factor I transcription factors regulate IGF binding protein 5 gene transcription in human osteoblasts. Biochim Biophys Acta 1789:78-87