Programmed cell death, or apoptosis, is a cellular process essential for normal development and tissue homeostasis. Disruption of the delicate balance between cellular life and death can lead to a host of human diseases, including cancer. BCL-2 family proteins are key apoptotic regulators and are composed of anti- and pro-apoptotic members. Pro-apoptotic BAX is a critical gatekeeper of mitochondrial apoptosis. Upon activation by cellular stress, BAX transforms from an inactive cytosolic monomer into a toxic pore that disrupts the mitochondrial membrane and initiates the apoptotic pathway. The Walensky laboratory previously identified a trigger site or on switch at BAX's N-terminal surface. Engagement of this interaction site by specific members of the BH3-only subgroup of BCL-2 proteins initiates BAX activation, including its translocation from the cytosol to the mitochondria membrane. This year, we determined that the C-terminal groove of BAX is also compatible with BH3-only protein interaction. We believe this newly identified C-terminal trigger site propels the activation and oligomerization of BAX at the mitochondrial membrane. Here, I propose to develop novel probes to dissect the binding determinants of the two BH3-binding sites on BAX and determine how their selective triggering functionally impacts the BAX activation pathway. Specifically, I aim to (1) : Define the binding determinants for selective engagement of the N- and C-terminal trigger sites of BAX using Stabilized Alpha-Helices of BCL-2 domains (SAHBs) and (2) Dissect the functional roles of the two BH3-binding sites on BAX in triggering its direct activation. By applying multidisciplinary approaches that span chemistry, apoptosis biology, and developmental cancer therapeutics, I hope to advance our understanding of the biochemical mechanism that drives BAX-mediated apoptosis and inform the development of a new strategy to reactivate apoptosis in cancer through direct BAX activation.

Public Health Relevance

BAX is a pro-apoptotic BCL-2 family member that, in response to cellular stress, transforms from an inactive cytosolic monomer into a toxic mitochondrial pore, a mechanism effectively suppressed by cancer cells to ensure their immortality. The Walensky laboratory recently identified two 'trigger sites' at BAX's N- and C-terminal surfaces that are believed to initiate and propel the BAX activation mechanism. Using multidisciplinary approaches, I am to dissect the binding determinants of these distinct regulatory sites and determine how specific ligand interaction impacts the BAX activation process, with the ultimate goal of advancing a new therapeutic strategy for reactivating the death pathway in cancer through direct BAX interaction.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Predoctoral Individual National Research Service Award (F31)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-F04A-W (20))
Program Officer
Korczak, Jeannette F
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Harvard Medical School
Schools of Medicine
United States
Zip Code
Pritz, Jonathan R; Wachter, Franziska; Lee, Susan et al. (2017) Allosteric sensitization of proapoptotic BAX. Nat Chem Biol 13:961-967