Telomerase is an important enzyme with implications in stem cell technology, anti cancer drug discovery and design, and understanding of the mechanisms of aging. Telomerase is a remarkable reverse transcriptase that uses its integral RNA subunit as the template for the synthesis of the DNA located at the 3'end of eukaryotic chromosomes. The product of telomerase activity, telomeric DNA, is a single strand of highly repetitive, guanine-rich DNA that is part of the specialized nucleoprotein complex called the telomere. Telomere maintenance is essential because the telomere guards the chromosome ends from mistaken recognition by the DNA repair machinery and nucleolytic degradation. Several features of telomerase remain mysterious. Completion of the studies proposed will illuminate several features of the secondary structure of the RNA subunit of telomerase. The proposed research will also determine the mechanism of the telomerase catalytic reaction cycle, which will allow a more accurate comparison between the structure of telomerase with a broad range of nucleic acid polymerases as well as ribonucleoprotein complexes. Specifically, the secondary structure of telomerase RNA will be elucidated by a combination of site-specific mutants and high resolution biochemical techniques using Tetrahymena thermophila telomerase RNA (tTR) as a model. The first specific aim will use a novel, single nucleotide resolution footprinting technique called selective 2'-hydroxyl acylation by primer extension (SHAPE) to reveal the secondary structure of tTR in complex with the reverse transcriptase domain of telomerase before any nucleotides have been added to the 3'end of telomeric DNA.
The second aim will use SHAPE to reveal the secondary structure of tTR in complex with the reverse transcriptase domain of telomerase in conformations after tTR has been reverse transcribed into a telomeric DNA repeat. The final specific aim will test a specific set of biochemical techniques to trap telomerase in conformations relative to the processes of nucleotide addition and nucleotide polymerization. SHAPE technology will then be used to reveal the secondary structure of tTR during these processes.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Predoctoral Individual National Research Service Award (F31)
Project #
5F31GM086084-04
Application #
8080883
Study Section
Special Emphasis Panel (ZRG1-GGG-T (29))
Program Officer
Toliver, Adolphus
Project Start
2008-07-17
Project End
2013-07-16
Budget Start
2011-07-17
Budget End
2012-07-16
Support Year
4
Fiscal Year
2011
Total Cost
$28,309
Indirect Cost
Name
University of North Carolina Chapel Hill
Department
Pharmacology
Type
Schools of Pharmacy
DUNS #
608195277
City
Chapel Hill
State
NC
Country
United States
Zip Code
27599
Cole, Daud I; Legassie, Jason D; Bonifacio, Laura N et al. (2012) New models of Tetrahymena telomerase RNA from experimentally derived constraints and modeling. J Am Chem Soc 134:20070-80