As elaborate and highly polarized cells, neurons of the central nervous system frequently extend their axons over extreme distances. Inherent in this phenomenon, neuronal processes encounter multiple varying extracellular microenvironments. beta-amyloid, glutamate, and neurotrophins are all examples of such microenvironmental exposures that may influence the function or even survival of neurons whose processes encounter them. Studies that examine the impact of these microenvironments on cellular processes and signaling cascades have in large part been hindered by the difficulty in replicating in vitro such microenvironmental exposures. Our lab has recently developed novel chambers using microfabrication and soft lithography techniques that can reliably and reproducibly simulate microenviroments encountered by CNS neurons. Further evidence shows that the neurites isolated are exclusively axons after nine days in vitro. This proposal is designed to further develop this novel multicompartment model for the study of microenvironmental influences over central neurons. In addition, the utility of this model will be examined in a study of the signaling cascades that mediate the phosphorylation of cAMP-responsive element binding protein (CREB) in response to axonally-restricted glutamate exposure. This proposal will test the hypothesis that axonal glutamate exposure induces CREB-phosphorylation via specific receptor-mediated initiation of intracellular signal transduction cascades. In particular, we will focus on potential calcium-mediated activation of Ras-ERK and CaM kinase pathways.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Predoctoral Individual National Research Service Award (F31)
Project #
5F31NS046208-02
Application #
6897929
Study Section
Special Emphasis Panel (ZRG1-F03A (20))
Program Officer
Kleitman, Naomi
Project Start
2004-04-12
Project End
2006-02-28
Budget Start
2005-04-12
Budget End
2006-02-28
Support Year
2
Fiscal Year
2005
Total Cost
$26,605
Indirect Cost
Name
University of California Irvine
Department
Biomedical Engineering
Type
Schools of Engineering
DUNS #
046705849
City
Irvine
State
CA
Country
United States
Zip Code
92697
Taylor, Anne M; Blurton-Jones, Mathew; Rhee, Seog Woo et al. (2005) A microfluidic culture platform for CNS axonal injury, regeneration and transport. Nat Methods 2:599-605