Infection by pandemic strains of influenza A virus, as well as the currently circulating H5N1 avian strains, results in a high rate of lethality, primarily due to the excessive accumulation of proinflammatory cytokines/chemokines that precedes cellular infiltration. In order to combat the excessive inflammation associated with infection, a thorough understanding of the mechanisms underlying mononuclear cell trafficking and dendritic cell biology within the lung is essential. This proposal will test the hypothesis that altered mononuclear cell trafficking and/or dysregulation of dendritic cells within the lung contribute to the high-pathology resulting from infection with lethal H5N1 strains of influenza A virus. In this study, the kinetics, phenotype, and differentiation of mononuclear cell trafficking from the bone marrow to the lung will be characterized following infection. These data will be used to determine critical differences in the course of innate activation between lethal and sublethal infections. Using a knockout mouse (CCR2-/-) deficient in dendritic cell accumulation in the lung, the specific contribution of dendritic cells to both host pathology and viral clearance will be examined. Specifically, these experiments will focus on direct viral clearance, killing of virus-infected cells, and antigen presentation at the site of infection. The knowledge gained by these experiments will lay the groundwork necessary for development of targeted therapies to reduce the excessive inflammation that contributes to increased host pathology and often death, without compromising the immune mechanisms required for viral clearance. Furthermore, the mechanisms involved in mononuclear cell trafficking from the bone marrow are not intrinsic to only influenza infection. The information gained from these experiments may also provide insight into infection by other pathogens, anti- cancer immunity, as well as auto-immune disorders.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Postdoctoral Individual National Research Service Award (F32)
Project #
5F32AI078667-02
Application #
7980866
Study Section
Special Emphasis Panel (ZRG1-F07-L (20))
Program Officer
Hauguel, Teresa M
Project Start
2009-08-01
Project End
2011-07-31
Budget Start
2010-08-01
Budget End
2011-07-31
Support Year
2
Fiscal Year
2010
Total Cost
$53,810
Indirect Cost
Name
St. Jude Children's Research Hospital
Department
Type
DUNS #
067717892
City
Memphis
State
TN
Country
United States
Zip Code
38105
Moseley, Carson E; Webster, Robert G; Aldridge, Jerry R (2010) Peroxisome proliferator-activated receptor and AMP-activated protein kinase agonists protect against lethal influenza virus challenge in mice. Influenza Other Respir Viruses 4:307-11
Boltz, David A; Aldridge Jr, Jerry R; Webster, Robert G et al. (2010) Drugs in development for influenza. Drugs 70:1349-62
Barber, Megan R W; Aldridge Jr, Jerry R; Webster, Robert G et al. (2010) Association of RIG-I with innate immunity of ducks to influenza. Proc Natl Acad Sci U S A 107:5913-8
Thomas, Paul G; Dash, Pradyot; Aldridge Jr, Jerry R et al. (2009) The intracellular sensor NLRP3 mediates key innate and healing responses to influenza A virus via the regulation of caspase-1. Immunity 30:566-75
Aldridge Jr, Jerry R; Moseley, Carson E; Boltz, David A et al. (2009) TNF/iNOS-producing dendritic cells are the necessary evil of lethal influenza virus infection. Proc Natl Acad Sci U S A 106:5306-11