Allergic inflammation and resulting disease caused by inappropriate responses to food and environmental antigens is a growing public health issue. Allergic inflammation is associated with T helper 2 (Th2) CD4+ T cells that produce Th2 cytokines, including interleukin-4 (IL-4) and IL-13. While the role of Th2 CD4+ T cells is well recognized during allergic responses, the innate cell types and cytokines that initiate and regulate allergic inflammation remain poorly defined. Recent studies have implicated basophils as an innate cell that promotes Th2 cytokine responses. Additionally, the cytokine thymic stromal lymphopoietin (TSLP) has been associated with the development of allergic disease in mice and human patients. Preliminary data described in this proposal show that TSLP elicits a unique population of murine basophils that are responsive to the Th2- associated cytokine IL-33. Additional data demonstrate that activated human basophils express the TSLP receptor (TSLPR), and that basophils isolated from patients suffering from eosinophilic esophagitis (EoE) are more likely to express the IL-33R. Taken together, these data suggest that TSLP may regulate human basophil responses that influence allergic inflammation.
The Specific Aims outlined in this proposal will directly test the influence of TSLP on human basophil populations.
Aim 1 will utilize a humanized mouse model in which human basophils can be readily defined to assess human basophil phenotype and function following exposure to TSLP in vitro and in vivo. Additionally, a novel murine food allergy model will be used to investigate the effects of TSLP on human basophil populations in humanized mice during the development of allergic inflammation in the intestine. Studies described in Aim 2 will assess basophil phenotype and function in the peripheral blood and esophageal tissue of human EoE patients and healthy controls and basophil responsiveness to TSLP and IL-33 in vitro. Finally, basophil responses in patients that have a gain- or loss-of function mutation in the TSLP gene will be assessed and correlated to disease severity to determine whether TSLP genotype, basophil phenotype and function, and allergic disease state are associated. Collectively, these studies will utilize novel models and approaches, in conjunction with cutting-edge studies in human patients, to investigate the innate mechanisms that control allergic inflammation in humans.

Public Health Relevance

Asthma and allergic diseases cause significant morbidity and mortality in industrialized nations, with more than 50% of people in the US suffering from at least one allergic disease. As the prevalence of allergic diseases continues to grow, there is a need to better understand the biological mechanisms that lead to allergic inflammation, in order to develop therapeutics and management strategies. This proposal will investigate the specific immunological pathways that underlie allergic disease in human patients.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Postdoctoral Individual National Research Service Award (F32)
Project #
5F32AI098365-02
Application #
8433040
Study Section
Special Emphasis Panel (ZRG1-F07-E (20))
Program Officer
Prograis, Lawrence J
Project Start
2012-07-01
Project End
2014-06-30
Budget Start
2013-07-01
Budget End
2014-06-30
Support Year
2
Fiscal Year
2013
Total Cost
$52,190
Indirect Cost
Name
University of Pennsylvania
Department
Neurosciences
Type
Schools of Medicine
DUNS #
042250712
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Alex, Aneesh; Tait Wojno, Elia D; Artis, David et al. (2016) Label-Free Imaging of Eosinophilic Esophagitis Mouse Models Using Optical Coherence Tomography. Methods Mol Biol 1422:127-36
Wojno, E D Tait; Monticelli, L A; Tran, S V et al. (2015) The prostaglandin D? receptor CRTH2 regulates accumulation of group 2 innate lymphoid cells in the inflamed lung. Mucosal Immunol 8:1313-23
Kim, Brian S; Wang, Kelvin; Siracusa, Mark C et al. (2014) Basophils promote innate lymphoid cell responses in inflamed skin. J Immunol 193:3717-25
Hill, D A; Siracusa, M C; Ruymann, K R et al. (2014) Omalizumab therapy is associated with reduced circulating basophil populations in asthmatic children. Allergy 69:674-7
Kim, Brian S; Wojno, Elia D Tait; Artis, David (2013) Innate lymphoid cells and allergic inflammation. Curr Opin Immunol 25:738-44
Noti, Mario; Wojno, Elia D Tait; Kim, Brian S et al. (2013) Thymic stromal lymphopoietin-elicited basophil responses promote eosinophilic esophagitis. Nat Med 19:1005-13
Tait Wojno, Elia D; Artis, David (2012) Innate lymphoid cells: balancing immunity, inflammation, and tissue repair in the intestine. Cell Host Microbe 12:445-57
Siracusa, Mark C; Wojno, Elia D Tait; Artis, David (2012) Functional heterogeneity in the basophil cell lineage. Adv Immunol 115:141-59