Metastatic melanoma is one of the fastest growing cancers, causing more than 8,650 deaths in 2009 alone, and this number is projected to increase over time. Models for the study of melanoma have multiple limitations, including the inability of most transgenic systems to accurately reproduce complex disease phenotypes such as cancer, and the inability of human embryonic stem (hES) and human induced pluripotent stem (hiPS) cell technology to reproduce the host microenvironments. It has been shown, however, that aggressive melanoma cells up-regulate a subset of neural crest (NC) cell guidance and differentiation markers as well as being a NC cell-derived cancer. We hypothesize that an in vivo platform for the study of melanoma development, invasion, and metastasis can be created using human NC cell chimeras. There are two specific goals of this study: 1) to optimize the incorporation of hES and hiPS cell-derived NC cells into a murine system, and 2) to model human melanoma development and metastasis in vivo. These chimeras will be created by in utero injections of hES or hiPS cell-derived NC cells into the developing mouse embryo at embryonic day 8.5 (E8.5). Human NC donor cells will be labeled with the eGFP marker and injected embryos will be analyzed during gestation and post-natally to localize the injected cells and establish methods optimizing their survival and colonization, such as the over-expression of NC cell survival genes via lentiviral transfection. We will then utilize this chimeric system to over-express common genes with known roles in melanoma, and inject these NC cells in utero at E8.5 to model melanoma initiation and development in vivo in a murine model system. Additionally, we will promote tumor formation of the hES or hiPS cell-derived NC cells after subcutaneous injection into an immune-compromised mouse, and the tumor cells formed can be cultured and re-injected at E8.5 into the developing mouse embryo to study tumor migration and metastasis over the developmental period. Overall, we propose to bridge the studies of embryonic development with cancer development, focusing on melanoma. We will analyze the progression of melanoma using hES/hiPS cell technology coupled with in vivo murine modeling. This novel system will not only bridge the knowledge of embryonic development and cancer biology, but will provide an in vivo model of melanoma to be used for testing potential therapeutic agents.

Public Health Relevance

Our proposal presents the usage of neural crest (NC) cells as a novel tool to study human development and diseases, focusing on melanoma. The generation of NC cell chimeras proposed in this project will allow for the study of applicable developmental and tissue specific cues in a living organism rather than a culture dish. Most importantly, our suggested chimeras may serve as an ideal and relevant live model for drug screening, testing and drug toxicity susceptibility for treatment of neurocristopathies and cancers related to NC cells, such as melanoma.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Postdoctoral Individual National Research Service Award (F32)
Project #
1F32CA196065-01
Application #
8908233
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Jakowlew, Sonia B
Project Start
2015-04-01
Project End
2018-03-31
Budget Start
2015-04-01
Budget End
2016-03-31
Support Year
1
Fiscal Year
2015
Total Cost
Indirect Cost
Name
Whitehead Institute for Biomedical Research
Department
Type
DUNS #
120989983
City
Cambridge
State
MA
Country
United States
Zip Code
Wert, Katherine J; Mahajan, Vinit B; Zhang, Lijuan et al. (2016) Neuroretinal hypoxic signaling in a new preclinical murine model for proliferative diabetic retinopathy. Signal Transduct Target Ther 1:
Cohen, Malkiel A; Wert, Katherine J; Goldmann, Johanna et al. (2016) Human neural crest cells contribute to coat pigmentation in interspecies chimeras after in utero injection into mouse embryos. Proc Natl Acad Sci U S A 113:1570-5
Wert, Katherine J; Bassuk, Alexander G; Wu, Wen-Hsuan et al. (2015) CAPN5 mutation in hereditary uveitis: the R243L mutation increases calpain catalytic activity and triggers intraocular inflammation in a mouse model. Hum Mol Genet 24:4584-98