Hyperacusis is a prevalent sensory disorder in which sounds of moderate intensity are perceived as intolerably loud or even painful. Despite the significant societal and economic impact of hyperacusis, treatments for this disorder are lacking. While hearing loss has consistently been identified as the primary risk factor for hyperacusis, many other disorders are also associated with loudness intolerance, suggesting the causes of hyperacusis can be varied. Hyperacusis is particularly prevalent in several neurodevelopmental disorders, such as Williams Syndrome, Fragile X Syndrome (FX), and autism spectrum disorders (ASD).
The aim of this proposal is to directly compare the mechanisms underlying hyperacusis of distinct origin to determine if there is a shared neural disruption that manifests a auditory hypersensitivity. Specifically, the proposed work will test the hypothesis that altered central gain control is a common pathophysiological mechanism in two distinct models of hyperacusis: long-term hearing loss and an animal model of FX, the leading inherited cause of ASD. A combination of electrophysiological and behavioral measures will be used to characterize the relationship between central auditory hyperactivity and hyperacusis-like behavior in these models to: (1) determine the neural correlates of hyperacusis due to hearing loss; (2) characterize hyperacusis and the potential neural correlates in an animal model of FX; and (3) identify drugs that may ameliorate measures of hyperacusis in both hearing loss and FX models. Understanding how these distinct forms of hyperacusis are similar and/or different will provide both clinical and basic science insights relevant to understanding and treating hyperacusis.

Public Health Relevance

This project proposes to identify the neural correlates of hyperacusis, a prominent sensory impairment, afflicting 8-9% of the general population, in which every day sounds are perceived as intolerably loud or painful. Behavioral and electrophysiological measures will be used to compare the mechanisms underlying hyperacusis associated with hearing loss or neurodevelopmental disruption and identify drugs that may ameliorate hyperacusis from these diverse backgrounds. The proposed studies will provide both clinical and basic science insights relevant to understanding and treating hyperacusis.

Agency
National Institute of Health (NIH)
Institute
National Institute on Deafness and Other Communication Disorders (NIDCD)
Type
Postdoctoral Individual National Research Service Award (F32)
Project #
1F32DC015160-01A1
Application #
9121238
Study Section
Special Emphasis Panel (ZDC1)
Program Officer
Rivera-Rentas, Alberto L
Project Start
2016-04-01
Project End
2019-03-31
Budget Start
2016-04-01
Budget End
2017-03-31
Support Year
1
Fiscal Year
2016
Total Cost
Indirect Cost
Name
State University of New York at Buffalo
Department
Psychology
Type
Schools of Arts and Sciences
DUNS #
038633251
City
Amherst
State
NY
Country
United States
Zip Code
14228
Chen, Yu-Chen; Chen, Guang-Di; Auerbach, Benjamin D et al. (2017) Tinnitus and hyperacusis: Contributions of paraflocculus, reticular formation and stress. Hear Res 349:208-222
Manohar, Senthilvelan; Spoth, Jaclyn; Radziwon, Kelly et al. (2017) Noise-induced hearing loss induces loudness intolerance in a rat Active Sound Avoidance Paradigm (ASAP). Hear Res 353:197-203
Salvi, Richard; Sun, Wei; Ding, Dalian et al. (2016) Inner Hair Cell Loss Disrupts Hearing and Cochlear Function Leading to Sensory Deprivation and Enhanced Central Auditory Gain. Front Neurosci 10:621