We intend to study the regulation of ENaC and the basolateral Na/K- ATPase under conditions of chronic up regulation or down regulation of apical Na+ entry. Although many studies have looked at short term regulation, few studies address chronic regulation of these transporters. Furthermore, the advent of an in vitro model represents a novel approach in examining these phenomena. Our model uses A6 cells--a cell line derived from Xenopus collecting duct (CD)--grown on semi-permeable supports. These cells, the standard model of the CD, will be subjected to two experimental conditions: 1. """"""""short-circuiting"""""""" as a model of increased apical Na+ entry; 2. Na+ depletion, where A6 cells are exposed to sodium depleted media, ablating apical Na+ entry. Preliminary data has already revealed changes in the expression of ENaC and Na/K-ATPase subunits when subjected to these different conditions. We hope to characterize the effects of apical sodium entry on the transcription, translation, and post- translational regulation of these channels using biochemical, electrophysiologic, and fluorescent microscopic techniques. In this way, we hope to derive a better understanding of the molecular basis for such entities as diuretic resistance and obstructive uropathy--clinical correlates for our model.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Postdoctoral Individual National Research Service Award (F32)
Project #
5F32DK010164-03
Application #
6657361
Study Section
General Medicine B Study Section (GMB)
Program Officer
Rankin, Tracy L
Project Start
2002-09-01
Project End
2004-03-31
Budget Start
2003-09-01
Budget End
2004-03-31
Support Year
3
Fiscal Year
2003
Total Cost
$34,941
Indirect Cost
Name
University of Pittsburgh
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
004514360
City
Pittsburgh
State
PA
Country
United States
Zip Code
15213