Obesity prevalence is dramatically rising in Western cultures creating devastating and costly health problems. Mutations in the melanocortin 4-receptor (MC4-R) gene are the most common monogenetic cause of severe human obesity. The central melanocortin system is a promising target for clinical drug development for the treatment of obesity and related metabolic disorders, as MC4-R agonists potently suppress food intake and body weight in animal models. This proposal is relevant to clinical drug development and public health, as experiments have potential to yield insights into the mechanisms through which MC4-R signaling contributes to food intake suppression.
The aims of this proposal are shaped by recent data showing that the nucleus tractus solitarius (NTS) of the caudal brainstem is a critical site of relevance to food intake control by MC4-R ligands, and that caudal brainstem MC4-R signaling is required for food intake suppression by exogenous cholecystokinin (CCK), the intestinally-derived satiation hormone. Experiments proposed in Specific Aim 1 will generate data that are necessary to more fully evaluate the hypothesis that caudal brainstem MC4-R signaling mediates the intake suppression triggered by various GI satiation signals. Caudal brainstem MC4-R antagonist treatment will be used to assess whether or not activation of these receptors is required for intake suppression following endogenous methods of GI satiation signaling, including intraintestinal nutrient delivery and gastric distention. Proposed research will also probe more deeply into the functional site of hindbrain MC4-R mediation of GI signals by examining the effects of parenchymal NTS MC4-R antagonist treatment on intake suppression by CCK. Adeno-associated virally-mediated knockdown of MC4-Rs in the NTS will be used as a complementary approach to antagonist treatment to assess the endogenous role of NTS MC4-Rs in mediating intake suppression by GI satiation signals. Importantly, MC4-R knockdown technology will also be used to assess the role of endogenous NTS MC4-R signaling in energy regulation more generally. Experiments proposed in Specific Aim 2 will expand consideration to the intracellular signaling pathways in the NTS contributing to intake suppression following MC4-R agonists, GI satiation signaling, and their putative combination. Proposed research will build upon our preliminary findings and other recent data by targeting the p44/42 mitogen-activated protein kinase (MAPK) signaling pathway and potential upstream kinases (protein kinase A [PKA] and phosphatidylinositol 3-kinase [PI3K]) as NTS intracellular mediators of intake suppression by MC4-R ligands and GI signals. Experiments will combine in vivo approaches using pharmacological inhibition of p44/42 MAPK, PKA, and PI3K, with in vitro approaches using activity assays and immunoblots, to assess the physiological role of these intracellular signaling pathways in the suppression of intake that follows MC4-R ligands, GI satiation signals, and potentially their combination. Research laid out in this proposal has the potential to deepen the basic science related to neurochemical mediators of food intake suppression.

Public Health Relevance

The prevalence of obese and overweight humans in Western cultures has increased dramatically, leading to devastating and costly health problems. Effective drug treatments for obesity treatment are likely to come from basic science investigating the neuronal controls of food intake behavior. Research proposed here is relevant to clinical drug development for obesity by exploring neurohormonal mediators of food intake suppression following gastrointestinal contact with ingested nutrients and the processing of these signals by the human obesity-linked melanocortin receptors in the caudal brainstem.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Postdoctoral Individual National Research Service Award (F32)
Project #
5F32DK089752-03
Application #
8296285
Study Section
Special Emphasis Panel (ZDK1-GRB-2 (M1))
Program Officer
Podskalny, Judith M,
Project Start
2010-07-02
Project End
2012-12-31
Budget Start
2012-07-02
Budget End
2012-12-31
Support Year
3
Fiscal Year
2012
Total Cost
$30,896
Indirect Cost
Name
University of Pennsylvania
Department
Psychology
Type
Schools of Arts and Sciences
DUNS #
042250712
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Kanoski, Scott E; Alhadeff, Amber L; Fortin, Samantha M et al. (2014) Leptin signaling in the medial nucleus tractus solitarius reduces food seeking and willingness to work for food. Neuropsychopharmacology 39:605-13
Kanoski, Scott E; Fortin, Samantha M; Ricks, Katie M et al. (2013) Ghrelin signaling in the ventral hippocampus stimulates learned and motivational aspects of feeding via PI3K-Akt signaling. Biol Psychiatry 73:915-23
Kanoski, Scott E (2012) Cognitive and neuronal systems underlying obesity. Physiol Behav 106:337-44
Kanoski, Scott E; Zhao, Shiru; Guarnieri, Douglas J et al. (2012) Endogenous leptin receptor signaling in the medial nucleus tractus solitarius affects meal size and potentiates intestinal satiation signals. Am J Physiol Endocrinol Metab 303:E496-503
Zhao, S; Kanoski, S E; Yan, J et al. (2012) Hindbrain leptin and glucagon-like-peptide-1 receptor signaling interact to suppress food intake in an additive manner. Int J Obes (Lond) 36:1522-8
Spaeth, Andrea M; Kanoski, Scott E; Hayes, Matthew R et al. (2012) TrkB receptor signaling in the nucleus tractus solitarius mediates the food intake-suppressive effects of hindbrain BDNF and leptin. Am J Physiol Endocrinol Metab 302:E1252-60
Kanoski, Scott E; Rupprecht, Laura E; Fortin, Samantha M et al. (2012) The role of nausea in food intake and body weight suppression by peripheral GLP-1 receptor agonists, exendin-4 and liraglutide. Neuropharmacology 62:1916-27
Kanoski, Scott E; Fortin, Samantha M; Arnold, Myrtha et al. (2011) Peripheral and central GLP-1 receptor populations mediate the anorectic effects of peripherally administered GLP-1 receptor agonists, liraglutide and exendin-4. Endocrinology 152:3103-12
Hayes, Matthew R; Kanoski, Scott E; De Jonghe, Bart C et al. (2011) The common hepatic branch of the vagus is not required to mediate the glycemic and food intake suppressive effects of glucagon-like-peptide-1. Am J Physiol Regul Integr Comp Physiol 301:R1479-85
Hayes, Matthew R; Kanoski, Scott E; Alhadeff, Amber L et al. (2011) Comparative effects of the long-acting GLP-1 receptor ligands, liraglutide and exendin-4, on food intake and body weight suppression in rats. Obesity (Silver Spring) 19:1342-9

Showing the most recent 10 out of 12 publications