The World Health Organization (WHO) estimates that there are currently 34 million people infected with HIV worldwide and 1.3 million in North America.(1) Pneumonia remains a leading cause of morbidity and mortality in HIV-infected individuals, and it is well recognized that HIV infection increases susceptibility to a number of bacterial, mycobacterial, fungal and viral pulmonary infections.(2-5) Inhaled pollutants such as traffic-related air pollution may augment the risk of pulmonary infection in these already susceptible immunosuppressed individuals. Therefore we propose to study the effects of air pollutants on lung immunity and susceptibility to pulmonary infection in those with HIV. Our overall hypothesis is that traffic-related air pollution (TRP) is associated with an increased risk for pulmonary infections in HIV-infected individuals, and that these inhaled pollutants decrease alveolar macrophage phagocytosis. To test this hypothesis, we will perform a nested case-control study to evaluate TRP exposure as a predictor of pneumonia in HIV-infected persons (Specific Aim 1). With a second cohort of healthy HIV-positive and negative participants, we will perform a cross-sectional study to evaluate the effects of TRP on alveolar macrophage phagocytosis. We will obtain alveolar macrophages from each participant using bronchoscopy with bronchoalveolar lavage (BAL) (Specific Aim 2). A better understanding of the detrimental effects of inhaled pollutants on lung immunity and susceptibility to pneumonia could have immense implications in the prevention of pneumonia in immunosuppressed patients, and in policymaking to better protect our vulnerable populations with more effective regulation of harmful airborne pollutants.

Public Health Relevance

HIV remains a common disease, with approximately 34 million people infected worldwide.(1) Those with HIV are at increased risk for pneumonia, and air pollutants may increase that risk even further. We propose to study the effects of traffic-related air pollution on the lung's ability to fight infection and its susceptibility to pneumonia.Our findings could help protect those with HIV from getting pneumonia, and help guide policymakers to more effectively regulate airborne toxins that are harmful to our health.

National Institute of Health (NIH)
National Institute of Environmental Health Sciences (NIEHS)
Postdoctoral Individual National Research Service Award (F32)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-AARR-C (22))
Program Officer
Humble, Michael C
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California San Francisco
Internal Medicine/Medicine
Schools of Medicine
San Francisco
United States
Zip Code
Blount, Robert J; Pascopella, Lisa; Catanzaro, Donald G et al. (2017) Traffic-Related Air Pollution and All-Cause Mortality during Tuberculosis Treatment in California. Environ Health Perspect 125:097026
Blount, Robert J; Tran, Bao; Jarlsberg, Leah G et al. (2014) Childhood tuberculosis in northern Viet Nam: a review of 103 cases. PLoS One 9:e97267
Blount, Robert J; Djawe, Kpandja; Daly, Kieran R et al. (2013) Ambient air pollution associated with suppressed serologic responses to Pneumocystis jirovecii in a prospective cohort of HIV-infected patients with Pneumocystis pneumonia. PLoS One 8:e80795