The cerebral cortex, the primary site for our perception, memory, and language, is spontaneously active. While this intrinsic activity is often considered """"""""noise,"""""""" recent work suggests that it holds a key secret for understanding cortical function. Remarkably, in thalamocortical slices the spatiotemporal patterns of spontaneous cortical activity are similar to the patterns triggered by thalamic input. This result suggests tha intrinsic cortical connectivity primarily drives the pattern of the cortical response. External inpt may then release this intrinsic activity pattern. However, it is crucial to validate this model in ivo where entire brain circuits are intact. The proposed Aim 1 will determine the spatiotemporal patterns of spontaneous cortical activity in the intact brain. Determining the pattern of spontaneous activity in vivo will be a starting point for future studies dissecting the microcircuiry that generates and modulates this activity.
Aim 2 will address how the spontaneous activity pattern is related to the cortical response to sensory input. To achieve these aims, we will utilize a head-fixed mouse on an air-floating spherical treadmill to image neural activity in awake behaving mice. We will use fast two-photon calcium imaging to measure the activity of large populations of neurons in vivo with unprecedented precision. To deliver external inputs, visual stimulation will be generated in Matlab using the Psychophysics Toolbox. This work will help to distinguish between two views of the cortex: either primarily driven by external inputs or primarily driven by internal circuitry. This will be an advance in basic neuroscience and also relevant to human disease. As the site of so many of the brain functions that humans hold dear, the cortex is also the target of many devastating neurologic and psychiatric diseases. By increasing our understanding of cortical function, this project will help lay the foundation for understanding the cortical dysfunction that underlies so much human suffering.

Public Health Relevance

The neocortex is the largest part of the mammalian brain and the primary site for our perception, memory, language, and imagination, yet its circuits are still quite mysterious. The proposed project will characterize the spontaneous activity in the neocortex and compare this intrinsic activity with the activity patterns generated by sensory stimulation. The findings from this work will enable a deep look into the circuit, provide the basis of a novel prospective of cortical function, and form the foundation for future investigations into how cortical circuits are ravaged by neuropsychiatric diseases.

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Postdoctoral Individual National Research Service Award (F32)
Project #
5F32EY022579-02
Application #
8605457
Study Section
Special Emphasis Panel (ZRG1-F02B-M (20))
Program Officer
Agarwal, Neeraj
Project Start
2013-01-01
Project End
2015-12-31
Budget Start
2014-01-01
Budget End
2014-12-31
Support Year
2
Fiscal Year
2014
Total Cost
$55,670
Indirect Cost
Name
Columbia University (N.Y.)
Department
Biology
Type
Other Domestic Higher Education
DUNS #
049179401
City
New York
State
NY
Country
United States
Zip Code
10027
Carrillo-Reid, Luis; Miller, Jae-Eun Kang; Hamm, Jordan P et al. (2015) Endogenous sequential cortical activity evoked by visual stimuli. J Neurosci 35:8813-28
Miller, Jae-eun Kang; Ayzenshtat, Inbal; Carrillo-Reid, Luis et al. (2014) Visual stimuli recruit intrinsically generated cortical ensembles. Proc Natl Acad Sci U S A 111:E4053-61