PIE-1, a protein found in early embryonic cells of C. elegans, is involved in the differentiation of germ cells from somatic cells. PIE-1 contains two putative zinc binding domains, ZF1 and ZF2, the latter of which has been shown to localize PIE-1 in germ cells and bind to P granules. The long term goal of this research proposal is to gain a fundamental understanding of the role of ZF2 of PIE-1 in embryonic development. Understanding the biochemical mechanisms responsible for cell differentiation and development is crucial for understanding human disorders including cancer and developmental disorders. With the support of this fellowship, a peptide that corresponds to ZF2 of PIE-1 will be prepared, both synthetically and recombinantly. The peptide's ability to chelate zinc will be assessed using cobalt as a spectroscopic probe and binding constants for both cobalt and zinc will be determined. A three dimensional solution structure will be solved, using multi-- dimensional NMR spectroscopy (e.g. COESY, NOESY, TOSCY). These characterizations coupled with comparisons to the ZF1 structure will enable structure/function relationships to be assessed.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Postdoctoral Individual National Research Service Award (F32)
Project #
5F32GM064213-03
Application #
6607181
Study Section
Molecular and Cellular Biophysics Study Section (BBCA)
Program Officer
Whitmarsh, John
Project Start
2001-07-02
Project End
Budget Start
2003-07-02
Budget End
2004-07-01
Support Year
3
Fiscal Year
2003
Total Cost
$46,420
Indirect Cost
Name
Johns Hopkins University
Department
Physiology
Type
Schools of Medicine
DUNS #
001910777
City
Baltimore
State
MD
Country
United States
Zip Code
21218
Michel, Sarah L J; Guerrerio, Anthony L; Berg, Jeremy M (2003) Selective RNA binding by a single CCCH zinc-binding domain from Nup475 (Tristetraprolin). Biochemistry 42:4626-30