Scientific research relevant to human health in areas such as biology, biochemistry, pharmacology, natural product synthesis, and environmental chemistry requires a growing and increasingly complex library of molecular tools in order to proceed. Synthetic organic chemistry must evolve to meet this need for useful molecules, and its ability to contribute to the scientific community is founded on the continued development of efficient and applicable synthetic methods. One of the great remaining challenges in synthetic methodology development is to uncover simple and general methods to introduce heteroatoms such as nitrogen into organic molecules. Within this broad context, this proposal focuses on new methods for installing C-N bonds into organic molecules in simple and efficient ways. Though many researchers have worked and are working in this area, this proposal utilizes novel and creative strategies to address the problem, making the methods proposed herein unique for several reasons. First, many of the current state-of-the-art methods for C-N bond formation require harsh oxidizing conditions and generate copious chemical waste. Portions of this proposal put forth methods that require only a catalyst and no additional reagents to convert substrates to products, with liberation of gaseous dihydrogen (H2) as the only byproduct. This strategy obviates the need for harsh reaction conditions, optimizes atom economy, and keeps chemical waste to a minimum. Secondly, the synthetic methods in this proposal hold the promise to exhibit modes of chemical selectivity distinct from existing methods by virtue of utilizing unconventional reaction mechanisms. This emerging dichotomy will cause the proposed methods to complement the larger body of synthetic literature and therefore contribute to the set of tools available to synthetic organic chemists for the synthesis of complicated molecules. These collective factors make the proposed research applicable and important to areas of scientific research devoted to human health.

Public Health Relevance

The development of new synthetic methods in organic chemistry is crucial 1) to allow scientists in several fields of human health to access the molecules necessary for their research, 2) to streamline the efficiency (and, therefore, cost) of making pharmaceutical compounds, and 3) to find methods that allow the synthesis of these complicated molecules while minimizing the chemical waste that pollutes the environment. The research in this proposal addresses all of these topics, and therefore is tremendously relevant to human health in tangible and applicable ways.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Postdoctoral Individual National Research Service Award (F32)
Project #
5F32GM093654-02
Application #
8110064
Study Section
Special Emphasis Panel (ZRG1-F04A-B (20))
Program Officer
Fabian, Miles
Project Start
2010-03-03
Project End
2013-03-02
Budget Start
2011-03-03
Budget End
2012-03-02
Support Year
2
Fiscal Year
2011
Total Cost
$48,398
Indirect Cost
Name
University of California Berkeley
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
124726725
City
Berkeley
State
CA
Country
United States
Zip Code
94704
Mankad, Neal P; Toste, F Dean (2010) C-C coupling reactivity of an alkylgold(III) fluoride complex with arylboronic acids. J Am Chem Soc 132:12859-61