This proposal outlines a plan to significantly improve current understanding of branched-selective asymmetric allylic alkylation reactions. This class of reactions has demonstrated utility in the asymmetric synthesis of pharmaceuticals. Challenges remain, however, that limit the application of these reactions to certain classes of substrates, particularly on a large scale. In the proposed study, quantum chemical methods will be used to gain a more complete understanding of the factors that dictate selectivity in these reactions. Specifically, the mechanisms of molybdenum- and iridium-catalyzed allylic alkylation reactions will be studied computationally to ascertain the steric and electronic origins of enantioselectivit and regioselectivity. Predictive models will be developed that can be applied to reactions of other catalysts and substrates. Finally, new catalysts will be designed computationally that are predicted to provide enhanced selectivity and efficiency. This study will significantly improve our understanding of this class of reactions and lead to further applications in the synthesis of biologically active compounds.

Public Health Relevance

The rapid synthesis and evaluation of new drugs is essential to further progress in public health. To meet this goal, new chemical reactions are needed as tools to construct potential drug candidates. This proposal outlines a plan to answer existing questions and overcome key limitations in a class of reactions that has proven utility in the synthesis of pharmaceuticals.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Postdoctoral Individual National Research Service Award (F32)
Project #
5F32GM106596-02
Application #
8642023
Study Section
Special Emphasis Panel (ZRG1-F04-W (20))
Program Officer
Barski, Oleg
Project Start
2013-04-01
Project End
2016-03-31
Budget Start
2014-04-01
Budget End
2015-03-31
Support Year
2
Fiscal Year
2014
Total Cost
$51,530
Indirect Cost
Name
University of California Los Angeles
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
092530369
City
Los Angeles
State
CA
Country
United States
Zip Code
90095
Fang, Lizhen; Saint-Denis, Tyler G; Taylor, Buck L H et al. (2017) Experimental and Computational Development of a Conformationally Flexible Template for the meta-C-H Functionalization of Benzoic Acids. J Am Chem Soc 139:10702-10714
Zhang, Shuo-Qing; Taylor, Buck L H; Ji, Chong-Lei et al. (2017) Mechanism and Origins of Ligand-Controlled Stereoselectivity of Ni-Catalyzed Suzuki-Miyaura Coupling with Benzylic Esters: A Computational Study. J Am Chem Soc 139:12994-13005
Boeser, Cornelia L; Holder, Jeffrey C; Taylor, Buck L H et al. (2015) Mechanistic analysis of an asymmetric palladium-catalyzed conjugate addition of arylboronic acids to ?-substituted cyclic enones. Chem Sci 6:1917-1922
Malik, Hasnain A; Taylor, Buck L H; Kerrigan, John R et al. (2014) Non-Directed Allylic C-H Acetoxylation in the Presence of Lewis Basic Heterocycles. Chem Sci 5:2352-2361