Bacteria and archaea acquire resistance viruses and plasmids by integrating short fragments of foreign DNA into clustered regularly interspaced short palindromic repeat (CRISPR). This process results in a genetic record of previous nucleic acid invasions. CRISPR loci are transcribed and processed into short CRISPR- derived RNAs (crRNA) that contain unique sequences derived from and complementary to previous genetic challengers. In Escherichia coli, the crRNA is assembled into a large (405 kDa) multi-subunit surveillance complex called Cascade (CRISPR-associated complex for antiviral defense). Cascade patrols the intracellular environment and binds to invading DNA sequences through crRNA-mediated base pairing. Target binding causes a conformational rearrangement of Cascade subunits and the DNA target. We hypothesize that these rearrangements reveal surface features that enhance the recruitment and activation of Cas3, a nuclease/helicase that is required for target degradation. To test this hypothesis we use structural, and biochemical strategies to determine how Cascade binds DNA targets, and how nucleic acid binding promotes the recruitment of Cas3. Specifically, this proposal aims to (1) determine the structures of Cascade at each stage of interference and (2) use surface plasmon resonance to determine the kinetic parameters of target binding and Cas3 recruitment.

Public Health Relevance

The development and use of CRISPRs for applications in biotechnology and medicine is one of the fastest growing aspects of life science research today. The work proposed here uses structural and biochemical techniques to determine how the CRISPR associated complex for antiviral defense (Cascade) identifies invading targets and recruits a trans-acting nuclease for target destruction. We anticipate that fundamental insights from these basic research interests may lead to new applications for these systems in targeted genome editing and the regulation of gene expression.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Postdoctoral Individual National Research Service Award (F32)
Project #
5F32GM108436-02
Application #
8901745
Study Section
Special Emphasis Panel (ZRG1-F04B-D (20))
Program Officer
Hoodbhoy, Tanya
Project Start
2014-08-01
Project End
2016-07-31
Budget Start
2015-08-01
Budget End
2016-07-31
Support Year
2
Fiscal Year
2015
Total Cost
$54,194
Indirect Cost
Name
Montana State University - Bozeman
Department
Microbiology/Immun/Virology
Type
Schools of Earth Sciences/Natur
DUNS #
625447982
City
Bozeman
State
MT
Country
United States
Zip Code
59717
Chowdhury, Saikat; Carter, Joshua; Rollins, MaryClare F et al. (2017) Structure Reveals Mechanisms of Viral Suppressors that Intercept a CRISPR RNA-Guided Surveillance Complex. Cell 169:47-57.e11
Luo, Michelle L; Jackson, Ryan N; Denny, Steven R et al. (2016) The CRISPR RNA-guided surveillance complex in Escherichia coli accommodates extended RNA spacers. Nucleic Acids Res 44:7385-94
Jackson, Ryan N; Wiedenheft, Blake (2015) A Conserved Structural Chassis for Mounting Versatile CRISPR RNA-Guided Immune Responses. Mol Cell 58:722-8
Jackson, Ryan N; McCoy, Airlie J; Terwilliger, Thomas C et al. (2015) X-ray structure determination using low-resolution electron microscopy maps for molecular replacement. Nat Protoc 10:1275-84
van Erp, Paul B G; Jackson, Ryan N; Carter, Joshua et al. (2015) Mechanism of CRISPR-RNA guided recognition of DNA targets in Escherichia coli. Nucleic Acids Res 43:8381-91
Jackson, Ryan N; Golden, Sarah M; van Erp, Paul B G et al. (2014) Structural biology. Crystal structure of the CRISPR RNA-guided surveillance complex from Escherichia coli. Science 345:1473-9