Human herpesvirus (HHV) causes serious illnesses such as cancer and genital herpes. The HHV family of viruses expresses proteases that are required for viral maturation and capsid formation and, therefore, infectivity. These serine proteases are unique among other known serine proteases in that they are active only in a dimeric form. Protein-protein interactions represent a validated and attractive therapeutic strategy, and methods for designing drug-like molecules that act to prevent such interactions have increased and improved over the past decade or more. In this project, the overarching aims are to fully understand and improve upon small molecules that have been characterized as protein-protein interaction inhibitors active against numerous HHV family members.
In aim one, the project proposes to employ X-ray crystallography in order to fully understand the similarities and differences in binding modes of small molecule allosteric inhibitors against two different herpesvirus family members, Kaposis' Sarcoma-associated Herpesvirus (KSHV) and cytomegalovirus (CMV). X-ray crystallography is a state-of-the-art technique that can provide invaluable information at the atomic level and can guide drug design, and will be employed in aim one.
In aim two, small molecule fragments that have been identified as potential dimer disruptor compounds will be probed with nuclear magnetic resonance techniques that can identify potential regions of dissimilar fragments that can be linked together. These linked fragments can improve the dug-likeness of the small molecules. Finally, in aim three, the project aims to validate the therapeutic potential of the strategy by comparing the efficacy of novel, improved compounds to that of one of the standards of care, ganciclovir. Overall, this project could provide compounds that are drug-like in nature, provide proof of concept for a novel therapeutic rationale, and could lead to the treatment of herpesvirus infections that cause serious illness.

Public Health Relevance

Current human herpesvirus therapeutics can lead to resistance due to viral mutation and can be toxic as a result of the mechanism of action for the drugs. This project aims to exploit a novel therapeutic rationale against the human herpesvirus and could lead to the discovery of drugs that do not face the same challenges as the current therapies and may be used to treat viral infections such as those that cause genital herpes, cancer and shingles.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Postdoctoral Individual National Research Service Award (F32)
Project #
5F32GM111012-02
Application #
8826586
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Barski, Oleg
Project Start
2014-04-01
Project End
2017-03-31
Budget Start
2015-04-01
Budget End
2016-03-31
Support Year
2
Fiscal Year
2015
Total Cost
Indirect Cost
Name
University of California San Francisco
Department
Pharmacology
Type
Schools of Pharmacy
DUNS #
094878337
City
San Francisco
State
CA
Country
United States
Zip Code
94118
Guo, Chun-Jun; Chang, Fang-Yuan; Wyche, Thomas P et al. (2017) Discovery of Reactive Microbiota-Derived Metabolites that Inhibit Host Proteases. Cell 168:517-526.e18
Acker, Timothy M; Gable, Jonathan E; Bohn, Markus-Frederik et al. (2017) Allosteric Inhibitors, Crystallography, and Comparative Analysis Reveal Network of Coordinated Movement across Human Herpesvirus Proteases. J Am Chem Soc 139:11650-11653
Gable, Jonathan E; Lee, Gregory M; Acker, Timothy M et al. (2016) Fragment-Based Protein-Protein Interaction Antagonists of a Viral Dimeric Protease. ChemMedChem 11:862-9
Gable, Jonathan E; Acker, Timothy M; Craik, Charles S (2014) Current and potential treatments for ubiquitous but neglected herpesvirus infections. Chem Rev 114:11382-412
Santangelo, Rose M; Acker, Timothy M; Zimmerman, Sommer S et al. (2012) Novel NMDA receptor modulators: an update. Expert Opin Ther Pat 22:1337-52