The long-term goal of the proposal is to decipher the function of mitochondrial orphan enzymes and their regulations on unexplored metabolic pathways with potential implications for human diseases. Mitochondria are intracellular organelles that house not only the machinery for ATP synthesis and fuel oxidation, but also metabolic enzymes for synthesis of building blocks for cell growth. For instance, a critical mitochondrial enzyme methylmalonyl-CoA mutase (MUT) recycles branched carbon chains from amino acids and lipids into tricarboxylic acid cycle. This process is critically dependent on an essential coenzyme vitamin B12 (B12). This project focuses on the role played by CLYBL, a ubiquitously expressed mitochondrial enzyme of unknown function, in regulating mitochondrial B12 function. A loss-of-function variant of CLYBL has been linked to subclinical B12 deficiency by two recent human genome-wide association studies. This proposal builds on the computational genomics analysis performed in our laboratory, which suggested CLYBL lies at the heart of a novel mitochondrial metabolic pathway connecting to B12-dependent MUT function. The proposed research seeks to understand: (1) enzymatic activities of CLYBL; (2) the CLYBL-dependent regulation of mitochondrial B12 function; and (3) molecular mechanism underlying this regulation. These studies will take advantage of the laboratory's expertise in advanced mass spectrometry-based metabolomics, computational genomics and mitochondrial physiology, combined with my skills in biochemistry and cell biology, to decipher the physiological function of CLYBL. This study of CLYBL represents a great example of reverse human genetics. This work promises to shed new insights on mitochondrial biochemistry with potential implications for human diseases.

Public Health Relevance

Severe vitamin B12 (B12) deficiency is associated with anemia, neurologic dysfunction and other disorders. Mild B12 deficiency is widespread and occurred in more than 20% of people above 60 and roughly 15% in younger population. The proposed project will shed light on unexplored B12-related pathway and will contribute to a better understand of mitochondrial metabolism with broad implications for human health.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Postdoctoral Individual National Research Service Award (F32)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Barski, Oleg
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Massachusetts General Hospital
United States
Zip Code
Calvo, Sarah E; Julien, Olivier; Clauser, Karl R et al. (2017) Comparative Analysis of Mitochondrial N-Termini from Mouse, Human, and Yeast. Mol Cell Proteomics 16:512-523
Shen, Hongying; Campanello, Gregory C; Flicker, Daniel et al. (2017) The Human Knockout Gene CLYBL Connects Itaconate to Vitamin B12. Cell 171:771-782.e11