Spermatogenesis is a complex developmental process where undifferentiated spermatogonia are differentiated into mature spermatozoa that are then able to fertilize oocytes. In mammals, this process involves hundreds of genes that are differentially regulated in spermatogenic tissue at particular stages of sperm differentiation. Identifying critical, regulatory genes controlling spermatogenesis can be significantly Informed through comparative gene expression and functional studies utilizing simpler animal models that have conserved developmental processes. My proposed research will characterize gene expression, protein-protein interactions, and gene silencing coupled with transcriptional profiling to elucidate the integral role of three orphan nuclear receptors (testicular orphan receptors and germ cell nuclear factor) in sperm development and differentiation utilizing the emerging model Nematostella vectensis (starlet sea anemone). Each of these receptors has been shown to be highly expressed in mammal testes at discrete stages of sperm differentiation;thus results from the proposed research will characterize novel roles for nuclear receptor function related to human male fertility. The proposed research supports the mission of the Reproductive Sciences Branch of The Eunice Kennedy Shriver National Institute of Child Health and Human Development by identifying genetic mechanisms that underlie reproductive health in humans. In addition, these three transcription factors, like other genes in the nuclear receptor superfamily, have pleiotropic roles in embryogenesis including roles in development of the nervous and cardiovascular system and in cancer due to expression in various embryonal carcinoma cell lines. I will take advantage of the experimental tractability and tools already developed for Nematostella to explore the additional roles of these receptors in embryo development and abnormal cell regulation. Relevance to Public Health Identifying and characterizing genes that play a fundamental role in human fertility is a critical step towards advancing diagnosis and treatment in human reproduction. Utilizing morphologically simple and experimentally tractable animal models to test specific molecular processes can result in rapid progress in understanding mechanisms. Nematostella, an emerging model system, will be used to study the role of three genes highly expressed and functionally important in male spermatogenesis to understand their role in differentiation of mature sperm from undifferentiated stem cells.

Agency
National Institute of Health (NIH)
Institute
Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD)
Type
Postdoctoral Individual National Research Service Award (F32)
Project #
5F32HD062178-03
Application #
8126296
Study Section
Special Emphasis Panel (ZRG1-F06-E (20))
Program Officer
Moss, Stuart B
Project Start
2009-09-09
Project End
2012-09-08
Budget Start
2011-09-09
Budget End
2012-09-08
Support Year
3
Fiscal Year
2011
Total Cost
$60,962
Indirect Cost
Name
Woods Hole Oceanographic Institution
Department
Type
DUNS #
001766682
City
Woods Hole
State
MA
Country
United States
Zip Code
02543
Traylor-Knowles, Nikki G; Kane, Eric G; Sombatsaphay, Vanna et al. (2015) Sex-specific and developmental expression of Dmrt genes in the starlet sea anemone, Nematostella vectensis. Evodevo 6:13
Reitzel, Adam M; Passamaneck, Yale J; Karchner, Sibel I et al. (2014) Aryl hydrocarbon receptor (AHR) in the cnidarian Nematostella vectensis: comparative expression, protein interactions, and ligand binding. Dev Genes Evol 224:13-24
Tarrant, A M; Reitzel, A M; Kwok, C K et al. (2014) Activation of the cnidarian oxidative stress response by ultraviolet radiation, polycyclic aromatic hydrocarbons and crude oil. J Exp Biol 217:1444-53
Reitzel, A M; Herrera, S; Layden, M J et al. (2013) Going where traditional markers have not gone before: utility of and promise for RAD sequencing in marine invertebrate phylogeography and population genomics. Mol Ecol 22:2953-70
Reitzel, Adam M; Tarrant, Ann M; Levy, Oren (2013) Circadian clocks in the cnidaria: environmental entrainment, molecular regulation, and organismal outputs. Integr Comp Biol 53:118-30
Gur Barzilai, Maya; Reitzel, Adam M; Kraus, Johanna E M et al. (2012) Convergent evolution of sodium ion selectivity in metazoan neuronal signaling. Cell Rep 2:242-8
Schnitzler, Christine E; Pang, Kevin; Powers, Meghan L et al. (2012) Genomic organization, evolution, and expression of photoprotein and opsin genes in Mnemiopsis leidyi: a new view of ctenophore photocytes. BMC Biol 10:107
Reitzel, Adam M; Behrendt, Lars; Tarrant, Ann M (2010) Light entrained rhythmic gene expression in the sea anemone Nematostella vectensis: the evolution of the animal circadian clock. PLoS One 5:e12805