Voltage gated """"""""delayed rectifier"""""""" potassium channels in excitable cells are important for rapid repolarization of the membrane during an action potential. Delayed rectifiers slowly inactivate during maintained depolarization, however (in some cases) inactivation develops quite rapidly during a train of action potential-like pulses. The time- and voltage-dependence of inactivation profoundly affects the behavior of a neuron, and could potentially be related to a number of neurological disorders that involve abnormal neuronal excitability, such as epilepsy. There are three specific aims of this work: (1) to determine the nature and extent of several types of inactivation that may occur in a particular delayed rectifier, Kv2.1, (2) to determine how inactivation is coupled to gating in Kv2.1, and (3) to apply that information to the study of native delayed rectifiers in thalamic neurons.
Those aims will be accomplished by conducting whole cell voltage clamp recordings in cultured HEK293 cells transfected with Kv2.
1 (Aims 1 and 2), or in acutely dissociated ventrobasal thalamic neurons from rat (Aim 3). These experiments will contribute significantly to our long-term objectives of understanding both the mechanism of ion channel function and the contribution of that function to neuronal activity.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Postdoctoral Individual National Research Service Award (F32)
Project #
5F32NS010828-02
Application #
6186727
Study Section
Special Emphasis Panel (ZRG1-MDCN-3 (01))
Program Officer
Talley, Edmund M
Project Start
2000-04-01
Project End
Budget Start
2000-04-01
Budget End
2000-09-30
Support Year
2
Fiscal Year
2000
Total Cost
$12,758
Indirect Cost
Name
Case Western Reserve University
Department
Physiology
Type
Schools of Medicine
DUNS #
077758407
City
Cleveland
State
OH
Country
United States
Zip Code
44106