Rett Syndrome (RTT) is an X-linked progressive neurodevelopmental disorder and is a common cause of severe intellectual disability and autistic-like symptoms in girls. Mutations in MECP2, a methyl-CpG-binding protein, cause of the majority of RTT cases. MeCP2 is a methyl-CpG-binding protein that represses transcription by binding the NCoR/HDAC3 histone deacetylase complex. Mutation of arginine 306 to cytosine (R306C) causes RTT and disrupts binding of MeCP2 to the NCoR complex, suggesting that MeCP2-NCoR interaction is critical for brain development and that disrupting this complex leads to RTT. The Greenberg laboratory, in its studies of neuronal activity-dependent gene transcription, discovered that in response to sensory experience MeCP2 becomes phosphorylated at threonine 308 (T308) and that this phosphorylation event perturbs the interaction of NCoR with MeCP2. Furthermore, preliminary experiments suggest that mutation of MeCP2 T308 to alanine (T308A) leads to attenuation of the induction of the activity-regulated gene Npas4. The Npas4 gene encodes a transcription factor that controls inhibitory synapse formation onto excitatory neurons. Thus, our preliminary data suggest that the interaction between MeCP2 and NCoR may be critical for Npas4 expression and is misregulated in RTT. To test this hypothesis we propose the following specific aims: (1) to further investigate if MeCP2-NCoR complex regulates neuronal activity-dependent gene expression and (2) to determine if the MeCP2-NCoR complex regulates gene expression by associating with the regulatory region of the Npas4 gene in an activity-dependent manner. It is our hope that these proposed experiments will provide a better understanding of MeCP2 function and will suggest potential therapeutic strategies for treating RTT.

Public Health Relevance

Rett Syndrome is a severe neurodevelopmental disorder affecting girls resulting in intellectual disabilities, and although mutations in the MECP2 gene ar known to cause Rett syndrome, how misregulation of MeCP2 leads to RTT is unclear. MeCP2 has been shown to bind to histone modification proteins such as the NCoR/HDAC3 complex to repress gene expression. In an effort to gain insight into the cellular and molecular mechanisms underlying Rett Syndrome, the proposed experiments will explore the hypothesis that RTT pathology is due to misregulation of the MeCP2-NCoR complex and subsequent alterations in activity-dependent gene expression.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Postdoctoral Individual National Research Service Award (F32)
Project #
1F32NS089186-01
Application #
8782942
Study Section
Special Emphasis Panel (ZRG1-F03A-N (20))
Program Officer
Mamounas, Laura
Project Start
2014-06-01
Project End
2016-05-31
Budget Start
2014-06-01
Budget End
2015-05-31
Support Year
1
Fiscal Year
2014
Total Cost
$51,530
Indirect Cost
Name
Harvard University
Department
Biology
Type
Schools of Medicine
DUNS #
047006379
City
Boston
State
MA
Country
United States
Zip Code
02115
Stroud, Hume; Su, Susan C; Hrvatin, Sinisa et al. (2017) Early-Life Gene Expression in Neurons Modulates Lasting Epigenetic States. Cell 171:1151-1164.e16